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The triad-interaction representation has been presented for the 2D and 3D homogeneous flows. This has several ad-
vantages over the usnal Fourier-amplitude representation: (i) The incompressibility is built into the equation as in
the vorticity equation. (ii) For a given wave vector, the number of dynamic equations is one less than that of the
Fourier-amplitude equations. (iii) In the inviscid limit, energy and enstrophy are conserved in 2D, whereas the 3D
flow conserves energy and helicity. (iv) The entire family of triad interactions is categorized into two classes in 2D
and four classes in 3D, according to the geometry of triad wave vectors. Lastly, (v) the necessary conditions for iso-

tropy in 3D emerge as the reflexional, rotational, and spherical symmetries in the wave vector space, whereas
polar symmetry is only the requirement in 2D. The triad-interaction representation has proved very useful in the
investigation of isolating constants of motion and the statistical theory of nonisotropic turbulence.

1. THE EQUATIONS OF EDDY MOTION

By Fourier analyzing the homogeneous velocity field,
the Navier—Stokes equations carry over to the Fourier-
amplitude equations which are, unfortunately, an infinite
set of ordinary differential equations. Since the incom-
pressibility prohibits longitudinal motion in the Fourier
space, the Fourier-amplitude equations may be pro-
jected into a plane perpendicular to the wave vector. We
can thus decompose the quadratic nonlinearity into the
three-Fourier-mode interactions, called hereafter the
triad interactions (TI), which extend over infinitely
coupled triad wave vectors. As early as in 1958,
Kraichnan' discussed the symbolic equations of eddy
motion consisting entirely of such TI’s. Although some
recent turbulence®* work make use of the representa-
tion in terms of TI’s, the TI structure of the Navier—
Stokes equations has not yet been exhibited in detail.
The purpose of this paper is therefore to give an ex-
plicit TI representation for the 2D and 3D homogeneous
flows, and hence categorize the nonlinear interactions
into various geometric classes. Although we shall not
discuss any application here, the TI representation lends
itself very naturally to the investigation of isolating
constants of motion for the homogeneous turbulence ®
and the statistical theory of nonisotropic turbulence. ®

Using the expansion

Ux, 0= T Uk, ) exp(ik - x), (1.1)

where

n,
k=Q@2a/LY{ n, | (n,n,,n,=x1, £2, ),

i,

the Fourier-amplitude equations for the incompressible
Navier—Stokes dynamics become

(0/8L+viPYU (k, () = =ik, P, (k) 2 U p,0U,(q,1),
k=p+q

(1.2)

where v is the kinematic viscosity and P, k)=5,, - kik;/
k*. The reality requirement states U (k) =U*(~k). Since
the incompressibility kU, (k)=0 restricts the motion to
a plane perpendicular to k, we may project the velocity
field into a subspace spanned® by polarization vectors
(k) (u=1,2)
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U (k, = 2, € (k) u' (k, 1), (1.3)
n=1,2
where
k-e*(kK)=0,
e (k) eMk)=5,,,
(1.4)

2. (k) e4(k) =P, (k).

u=1,2
The first of (1.4) is the orthogonality of k with e*(k), the
second is the orthonormality, and the last is the identity
of the orthonormal vectors (¢!(k), €(k), k/k). The 2D
flow has only one polarization vector normal to k. The
choice of €“(k) is, however, not unique in 3D, for any
orthonormal vectors will do as long as they are both
perpendicular to k.

The introduction of (1.3) into (1.2) gives the TI rep-
resentation that we are seeking:

(0/81 + vkt (k, )=~1 2 LE. oy ler w(p, Mg, t),
A ey

1.5
where the coupling coefficient is (1.5)

¢>i,‘;’,': = (k- eq)) (e (k) - €(p)). (1.6)
Because of the first of (1.4), the incompressibility is
embodied in (1.5) as in the vorticity equation. In 2D,
(1.5) is a single scalar equation for #*(k), identical to
the vorticity equation. In the 3D case, there are two
equations for #*(k) in contrast to the three equations for
U (k) in (1. 2). This reduction in number of equations is
due to the vorticity vector w(k) having two independent
components, since k- w(k)=0.

To facilitate the enumeration of TI's, we restrict the
wave vector domain to the positive range and split the
convolution sum into two parts

(8/0t+ vED)u"(k, )

p<k

==i2 ( 2 ¢;L;‘:,'<Ak-p) u™*(p, Hu**(k - p, 1)
Py 0o

+ z; PeE gy XD, Dt (K +p, f)>, (1.7
where
o= ot i,
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is the symmetrized coupling coefficient. We have re-
versed the directions of p and (k - p) in the first sum of
(1.7) and the direction of (k + p) in the second sum.
Hence, the triad wave vector now has the head-to-tail
configuration.

Several constants of motion are known in the inviscid
limit. First, the energy conservation is

d

1 3 2

5 AL " (k) |2=0. (1.8)
Second, the enstrophy is also conserved in 2D:

l i 2,1 2 _

5 g 12| uMk) |2 =0, (1.9)

which follows from w,(k) =i(k,& — ke lul(k). Lastly, the
3D flow conserves the helicity which is defined by the
scalar product of U (x, {) and the vorticity w(x, {):
4 2 2y te, koeh(K)erk)ut (k) ur*(k) =0, (1.10)
di Y HmTm ¢
where ¢, is the unit alternating tensor (=01if i,j,m are
not distinct; =+ 1 when i, j, m are cyclic and acyclic,
respectively). According to Moffatt, " helicity measures
the degree of knottedness of the vortex lines and is a
particular consequence of Kelvin’s circulation theorem.
We shall see that energy, enstrophy, and helicity are
conserved in the TI representation.

2. TWO-DIMENSIONAL FLOW

We may drop the polarization vector indices
(4,p,A=1) in 2D and also the viscous term for the
notational compactness

k
ik)=-1 <§_‘; Dyio, (k-p)“*(p)”*(k -p)

+ p;) Drry, (hp)“*(p) l‘*(k+p)>» (2.1)
where the dot denotes 9/9¢. By choosing L =27, the
wave vector space consists of plane lattice points k
:("'é) (n,, n,=positive integers). For a given k, the
first sum of (2. 1) gives two types of terms. The first
type is pairs that can be combined under the sym-
metrized coupling coefficient, and the second type is a
single term corresponding to p=k/2. When the triad
wave vectors collapse to a single vector, we find from
(1. 6) that ¢,,,,=0. So, discounting such degenerate
triad wave vectors, (2.1) for the 3X 3 lattice may be
put in the vector form
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where at," stands for an,,qu*(p)u*(q). Note that each
vector has no more than three nonzero elements, and
this, of course, is independent of the size of wave vec-
tor lattice under consideration. (Although ?pglﬁzo, we
have retained it in the last vector for symmetric
representation. )

A. The fundamental triad interaction

The structure of TI can be exhibited by stripping all
the zeros in any vector of (2. 2):

WK) = =i dyp, q W (PlXQ),

i(P)=—i ¢p, o.x WM Qu*K), (2.3)
”(Q) =-1i 5Q| K,pu*(K)u*(P)»

where K+ P+Q=0. The coupling coefficients obey
E)xlp,o+apiq,x+60|x.p:0! (2.4)

for terms like (¢(K)« P) and (¢(K) - Q) add up to zero on
account of K+ P +Q=0. The detailed energy conserva-
tion of (2. 3) directly follows from (2.4), and hence this
implies the overall conservation (1. 8) because energy
being conserved by each and every TI. The coupling co-
efficients obey another constraint,

KzaKIP,Q+P27¢PIQ,K+Q2$QIK,P:0’ (2.5)

from which follows the enstrophy conservation (1.9).
To verify (2. 5), we write out the left-hand side (lhs) by
using (¢(K) - P) = - (¢(K) - Q) and similar relations in-
volving e(P) and €(Q):

lhs = (KPQ)[K(e(K) - P) PQ(e(P) * e(Q)) (P* - @°)
+ P(e(P) - Q) QK (e(Q) * e(K)) (@% - K?)

+ Qe(Q) - K) KP (e(K) - (P)) (K* - PP)]. (2.6)
Since K(e(K) - P) = P(e(P) * Q) = @(e(Q) - K), we can show
by using the cosine laws that the curly bracket vanishes
identically.

B. The coupling coefficients

Let us express K and the polarization vector in polar
coordinates
cosd,

K=K| . and
sind,

sinéd,

e(K) = ~cosb, |’

(2.7)
where cosd,=K,/K and sinf,=K,/K. Similar expres-
sions exist for P and Q, and their polarization vectors.
Note that ¢(K) is reflexional about K, i.e., &K)

= —¢(~K). In the first sum of (2.1), we have reversed
the directions of both p and (k - p), but only the direction
of (k + p) in the second sum. By tracing the derivation,
we see that the first two elements in each vector of

(2. 2) were generated by the second sum, whereas the
last element was originated from the first sum. Let us
now denote by K, P, and Q the wave vectors in the order
that they appear in column vectors. Then, considering
the wave vector reversal and the reflexionality of e, the
coupling coefficients have the representation

Pxip,o = (K e(P)((K) - Q) - (K - e(Q)) (e(K) - «(P)),
Bpiax=— (P e@Q))(e(P) - (K)) - (P e(K)) (e(P) - «(Q)),
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FIG. 1. Plane triad wave vector,

dax,p=(Q-€K)) Q) (P)) + (Q - €(P)) (e(Q) - e(K)).

(2. 8)
First, express (2. 8) in polar coordinates, and then
simplify it further by denoting the internal angles op-
posite to K, P, Q by a=6,~-6, 8=0,-6,, y=1+6,-0,
respectively (Fig. 1):

$Klp‘q =K Sin(B '-7);

$p1q.x = Psinly - ), (2.9)

-‘EQH(.;: Q Sin(a - B)

This shows that the ¢’s are determined by the shape of
triangle formed by K, P, and €, and not by its orienta-
tion in the 2D wave vector space. Note that (2.9) agrees
with Kraichnan’s for the interacting shear-wave
system.®

C. Classification of the triad interactions

According to the geometry of triad wave vectors, we
can categorize the TI’s in 2D into 2 classes. The first
I

{109, (2]

e et
third-order

112 112 123 123 213 (213
+ + + +
+[(145)2+(235>2 (145)2 (235)2 (235)2 145

314\ (314 (235\ .(325\ (235
+ + + +
(235)2 <145>2+<145>2 (145)2 (325

112 123 123 <213 224 <134>
+
T (134>2+<134)2+<224>2+ 134>2+<134>2 314),

two vectors in (2. 2) have triad wave vectors which form
triangles symmetric about the diagonal. So, we shall
say they are of the symmetric pair class. For such a
pair, ¢’s are the same except for sign

ML
2]11,

Next, the last vector in (2. 2) has the triad wave vector
forming an isosceles triangle with the base Q=(3),
hence it is said belonging to the isosceles class. For
such a TI,

¢Q|K.p:0’

and, of course,

{2.10)

2131 3112 12 1|21

(51 121 51 219 $2 u): '(51’23: ¢72 31y
1{23 1

(2.11)

$x|p,Q:’ aPIQ,K'

Let us denote by (K, P, Q),, the column vector with
the nonzero elements ¢y, p, qu*(P)u*(Q),
;P—p| Q,Ku*(Q) u*(K), dak,p u*(K)u*(P), where

m=1 for the isosceles class,

m=2 for the symmetric pair class.

Since it is superfluous to enumerate both of the sym-
metric pair, we shall adopt the convention that a TI of
the symmetric class be represented by either one of

the pair. Then, the subscript m actually refers to multi-
plicity. Using this compact notation, the TI's in the

5X5 lattice may be summarized as

fourth-order

134> <134> <224> <2z4>
+ + + +

>2 <1452 235/, \235/, \145),
>+<145>]7

L \415/,

(2.12)

\—’\~

fifth-order

where u, is the column vector (u(}), «(}), ...). Note that
the first square bracket recapitulates (2. 2). The second
bracket represents the 11 TI’s which involve the wave
vectors in the fourth-order lattice shell, and the third
bracket the 30 TI's of the fifth~order lattice shell. Due
to the proliferation of TI’s, algebraically handling TI
terms becomes very tedious as the lattice order in-
creases. It is however, more efficient to generate the
TI’s for a given lattice system by a diagrammatic pro-
cedure (the detail of which will not be presented here).
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—
3. THREE-DIMENSIONAL FLOW

We can enumerate (1.7) in 3D lattice in much the same
way as in 2D. Even for the smallest 3X3X 3 lattice, the
equation comparable to (2.2) involves vectors of the
dimension 14, so writing them down here in the usual
notation is impractical. Let us therefore compress the
vector by deleting all the zeros in it. Ignoring degen-
erate triad wave vectors, the equations of eddy motion
for the 3X3X 3 lattice may be put in the compressed
vector form
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®1)12 $123 112
1]23 1)12 1|23
1z 112 1123
“ . P11 + $2131 Tl b1 +

uw=-iy, 2|31 1j21 2|31
vt 1l21 1l21 2|31
2111 D312 211
3|12 2|11 3|12
211 2111 3112

Oy (23 P13 P1y23

2|13 1}23 2|13

1123 1l23 il1z

+ D131 + 1|32 + TR B

1|32 2|31 132

2|31 2|31 1l21

$3)12 P32 $3)12

3(21 3|12 321

3l12 312 211

Here EHW stands for ¢*°+***(p) u**(q). Since u¥ is the column vector

kip.q

1 1 2 2 1 1
(u“ 1, w2, u*{ 1), "l 2], u*{1},u*{2],u*
1 1 1 1 2 2

the first vector in reality represents

G112 Prpey 0, 0, 0, 0, 0, &y, 0, 0, 0, 0, 0, O,
1123 2|31 3|12
112 1i21 2]11

and others are interpreted likewise.

A. The coupling coefficients

We express (K, ¢ (K), ¢(K)) by using the spherical
coordinates similar to Euler’s angles. First of all, we
have

cosf, cosn,
K=K][ sin®, cosn, |, (3.2)
sinn,
where cosf,=K,/K’, sinf,=K,/K’, cosn,=K'/K, and
simm ,=K,/K (K'=+vKZ+K3). Now choose a unit column

vector e = (cosd,, sinf,, 0). We then fix ¢(K) by
exK/iexK| (Fig. 2),

sing,
e(K)= [-cosd, | , (3.3a)
O -]
k3
K
o~ FIG. 2. Polarization vectors.
LD ke
i
Z(K)\" \\‘
\\ ]
K R AS
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112
1|12 213
123 ilz3 123
Pam I+ $rar T P1ya0
1|21 1|32 H B
2|31 2|31 3
$ano P21 $s)21
2{11 3|21 2|11
312 3|12 3l12
112 P13 $2)13
112 1|23 2|13
1i23 1l12 1l23
‘1’1 21 + ;,52 31 + 61 32 .
1|22 2|31 1|32
2131 1j21 2|31 (3.1)
bap11 Pspz b3121
2111 3|12 )21
3]12 2l11 3l12
2 3 3 2 2 3 3
sur 3wt 2 ), utr 3 ), el 2 ),u 3, 2], w3
2 2 2 3 3 3 3

and €(K) by KXe{(K)/ I Kxe}(K)!,

cost, sinn,
€K)= [ sin6,sinm, (3. 3b)
-cosn, /e
Note that €'(K) is reflexional, but ¢*(K) is not:
1K) = - (- K), €(K)=¢€(-K). (3. 4)

We indicate by the subscript e that the representation
(3. 3) does in general depend on the choice of e. It is,
however, evident from the cross product that a unit vec-
tor in the plane containing the K, axis and K will unique-
ly determine the polarization vectors up to a sign. In
other words, an e in the azimuthal angle range

(7/2-m,, w/2] will give the same €*(K) as (3. 3), where-
as in the range [0, 7/2 -1, the polarization vectors are
just the reflexion of (3. 3) about K.

Considering the wave vector reversal and (3. 4), the
coupling coefficients have the following representation:

Dkle = T (K- €(P)) (e*(K) - XQ)) + (K - XQ)) (¢*(K) - °(P))],
Blraie = 7 (P - Q) (€(P) - (K)) + (P - ¢ (K)) (2(P) - XQ))],

Ut %=+ [(Q - € (K)) (XQ) - °(P)) + (Q+ €”(P)) (*@) - €* (K)) ).

(3.5)

Here we take the upper and lower signs for A =1 and 2,
respectively. As a typical numerical example, we
present here the values of ¢’s for the first vector of
(3.1):
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(B, OHid e Puk's) =(-8, 11, - 3)/Vi3-5-2, B. The fundamental triad interaction
(‘pglxl’ze’ ‘blvllzal K 6261“'1-1’) =(-11, 7, 4)/¥17- 13+ 5-2, Each vector in (3.1) represents the fundamental TI
(PR, Pk, baik’e) =(11, -2, ~9)/V6-13-5-2,
(PUZ2y, Polx, P’ )=(7, —84, T7)/VIT-6-13-5-2, W (K) =1 % okiylo wPRQ),
(g%clllﬁfqy ¢p‘|1q2:l’ banke) =(=2, =7, 9)/V3-13-5-2, .
(B, 2y, F3y) =(33, 5, —38)/ AT-3-13°5-2, u*(P)=—1i Z 4, ok u(Q) urH(K), (3.7
(PX%la, Fpice Paxe)=(-11, 14, -3)/V6-3-13-5-2, _ TuIod L Ox(K) 3
= - lZ Pak)s u”XK)u*(P),
(& ¥ o 52’”202 K’ $2QIIK )
— (=111, 120, —9)/V17-6-3-13-5-2. (3.6) over K+ P+Q=0. Writing it out in detail, we have
}
! (K) PKira DK pq PxeQ Pxipa
u'(P) ®plax d3Tax 0 0
iMQ) ——y ﬁblquntcp + 0 + alolxll%p + 0
#2(K) 0 0 0 0
u?(P) 0 0 Ppiak ook
Q) 0 Saix 0 Figs
0 0 0 0
dPiax $plax 0 0
Paixr 0 $alke 0
| &) | B e | 7| e ‘
0 0 Pl Fprax
0 ¢c|o|2ép 0 -‘520”21%? (3.8)

The energy conservation follows because the vector
(**(K), u'¥P), ..., ©®*Q)) is orthogonal to each and
every vector in (3. 8), since

Wip,2
KIP Q

oll,u

KAl 0
Poréix T ok,

oK, P~ (3.9)

for K+ P +Q=0. The overall conservation (1. 8) is then
a direct consequence of this.

In the spherical representation, the helicity becomes

H= ; k(i (k) 1®*(K) = u?(k) ut *(k)). (3.10)

For the fundamental TI, the helicity conservation (1. 10)
therefore demands

1)3-1.7P¢3-ﬂ:)6'3 u

((—1)“K$.‘z:;'.o +(-

u,0,3=1,2

(PP QEGIR )i PR

+ complex conjugate =0, (3.11)

Since we do not have a concise analytical demonstration
that the sums of three ¢’s in the parenthesis are identi-
cally zero, it is more direct to verify (3. 11) by using
the typical numerical values for ¢’s given in (3. 6).
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{
At this point in the discussion, we wish to point out
the essential difference in the 2D and 3D flow dynamics.
In 2D, since there is one polarization vector for a given

k, the only possible quadratic constant of motion is
l'(k)12. Hence, (1.8) and (1.9) may be combined into

one constraint:
1 d 2 1 2
5 @ L (et o) [®]*=0 (o, c,=const) .

(3.12)

Therefore, the energy and enstrophy conservations are
invariance restrictions imposed simultaneously on each
and every TI. In contradistinction, the quadratic con-
stants of motion in 3D are expressed by components of
the Hermitian matrix

wt (k)P *(k)
() [*

(k) |2
3(K)u *(k)

Note that (1. 8) is invariance of the trace summed over
all k, whereas (1. 10) states invariance of %k times the
imaginary part of the off-diagonal, also summed over
all k. In the 3D flow, therefore, the energy and helicity
conservations are invariance restrictions imposed
separately on two groups of TI’s.
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C. Classification of the triad interactions

The TI's of 3D flow can be divided into four classes,
two of which are quite similar to the 2D flow case.
First of all, the triad wave vectors of the first two vec-
tors in (3. 1) form triangles which are symmetric about
the plane containing the k; axis and the diagonal of the
k, - k, plane, called hereafter the diagonal plane. Simi-
larly, the next six vectors can also be paired off into
symmetric pairs. Hence, the first eight vectors will be
said belonging to the symmetric pair class. As in the
2D case, the symmetric pair has ¢’ s which are the
same except for sign; for example,

Brlea  Zelaw  SAlue =(= l)uemx BHEIPA Tpian AL o

112 Prpar s P21 | = 1123 s P2p31 » ¥Ysp12

1|23 2|3t 3‘12 1'12 1‘21 211

11z 1j21 211 1l1z 121 2|11
(3.13)

Secondly, the ninth vector in (3. 1) has the triad wave

vector forming an isosceles triangle, so it belongs to

the isosceles class. Similar to (2.11), certain ¢’s for
the base Q=(3) are identically zero

Fllu,p 0

QlK.p~ (3.14)

The TI’s mentioned above are essentially the same
kinds that we have already encountered in the 2D flow,
except that symmetry is now with respect to the diagona
plane. In 3D, however, there are TI’s whose triad wave
vectors lie in either the diagonal plane or the plane con-
taining the %, axis and an off-diagonal of the &, - &, ’

112 112 112 123
w=-iy <123} +{123) +|213} +{213
e \112/, 123/, 123/, 123

+

plane, called the off-diagonal plane. The last three vec-
tors in (3. 1) have triad wave vectors in the diagonal
plane, hence they will be said belonging to the diagonal
plane class. Although these three classes exhaust the
TI's in (3. 1), there is another class, called the off-
diagonal plane class, having the triad wave vector in an
off-diagonal plane, The TI’s of such a class, however,
appear in symmetric pairs. We shall see them first in
the 4 X4 x4 lattice. Quite a few 5’5 vanish identically
for the TI of both diagonal and off-diagonal plane
classes

Py ARTA S 1. N~ T+ JE
KIP, Q7 YPIQK  YQIK,P ™%
(3.15)

k%= 7 1dk = Paik e =0
where (g, p,0)=(1,1,1), (1,2,2), (2,1,2), and (2,2,1).

Again, we denote by (K, P,Q),, the column vector with
the nonzero elements

Px15 ) X(PYM(Q), b5k 1 Q™ (K), F4%gtp v X(K)ux(P),

where
m=1 for the isosceles class,
m =1' for the diagonal plane class,
m =2 for the symmetric pair class,

m =2’ for the off-diagonal plane class.

Using this supercompact notation, (3.1) becomes

123 112 123 213
213) +{112]) +{123}) +{213
112/, \123/, 112/, 123/,

(3.16)

Since the subscript m (ignoring any primes) refers to multiplicity, we see that (3.16) represents 12 TI's. After a
tedious enumeration, the TI's involving wave vectors in the fourth-order lattice sheil can be summarized as

follows:

112 123 123 213
134) |+ |{134) +|224) +|134
N112/, 112/, \112/, \112/,

112 112 112
+|[134) +|134) + {224
123/, \213/, \123/,
123 123 123 123
+ {134) +{134) +(224] +|224) +
123/, \213/, \t23/, \213/,
134 134 314 134
+{{224) +(224) +(134] +(134] +
123/, \213/, \123/, \123/,
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134 314 134
224) +{134) +|134
112/, \112/, \112/,

213 213

134) + (134

123/, \213/,

134 224

134] +(224

213/, \123/,
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112 112 112 112
+l{112 123) +(123) +{123
(\134/, 134/, 224/, 314/,
/123 123 123 123
+1{[{213 213) +l123) +(123] +
(\134/, \224/, \314/, \134/,
/112 112 112 112
+|[134 134) +(134 224
[\134/, 224/, 314/, 134/,
/123 123 123 123
+il134 134 ) +l224 224 +
L134 224/, 134/, 224/,
123 123 134 224
+ 134 224 ) |+ [[314) +{134
3142 314/, 134/, 314/,
134 224 134
+(134) +(224) +|134
224/, 134/, \314/,.

The introduction of the above into (3. 16) would complete
the equations of eddy motion for the 4X4x4 lattice. As
in the 2D case, we can devise a diagrammatic procedure
for generating more efficiently the TT's of a given cubic
lattice.

4. STATISTICAL SYMMETRIES FOR ISOTROPY

The TI representation is particularly instrumental in
bringing out the symmetry conditions necessary for
isotropy, thereby allowing us to quantify such non-
isotropic effects as the departures from rotational and
reflexional invariances. We begin with the velocity

correlation tensor
R, (X, r)=(2n/LY (U (x)U,(x+r)), (4.1)

where p is the dimension, and { ) denotes ensemble
average. Its Fourier representation is then

R, (r)=(Qn/L) ; (U k) U (k) exp(ik - r). (4.2)
Since (27/LYZ, — [ dk in the limit as L ~«, we may
identify (U}(k)U,(k)) with the spectral tensor

& (k) = UHK) U (K)). (4.3)

The spectral tensor shows the Hermitian symmetry®
®,(k)=®, (- k)= *(k). Further, it has the isotropic
representation

®,,(k) =P, (k) E,(k)/k, (4. 4)
where E,(k) is the energy spectrum in 2D, and
®,,k)= P (K)E(k)/4T k?, (4.5)

where E (k) is the energy spectrum in 3D.

Returning to (4. 3), we now express the spectral tensor
in terms of (1.3). First, we have in 2D

) =P, (k) (|ulk) [%. (4.6)
In view of (4.4), isotropy demands (|u(k)|?) be polar

symmetric in the 2D wave vector space.
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123

123

224/,

213 213 213

134) +[134) +{134

134/, \224/, \314/,
134 134 134
224) +(224) + (314
134/, \224/, \224/,

(3.17)

(Ju(k) |2y — E, (&) /nk. 4.7
Second, the spectral tensor in 3D becomes

@,,06) = 32 4 (k) e ) (lur (i) [%) + 23 () e}k (¥ (k) wM(K)).
(4.8)

Upon comparing with (4. 5), we therefore find the con-
ditions necessary for isotropy:
1) @@k =0 (1 #1)
(1) (|u*(kx)|?) are independent of u,
(iil) (Ju* (k) [~ Eq(k)/4n &,

(4.9)

Note that the condition (i) imposes the reflexional sym-
metry, (ii) guarantees the rotational symmetry, and
(iii) demands the spherical symmetry of energy spec-
trum functions in the 3D wave vector space.

Suppose that (ii) and (iii) are maintained, but the
reflexional symmetry (i) is relaxed. Then, the spectral
tensor would have the additional term which changes
sign with the reflexion of the axes

iF(k)

E, (k)
$,K)=P,k) 737+ Bkt Cim R e

v (4.10)

Moffatt!® calls this the spectral tensor for “pseudo-
isotropic” turbulence. He has pointed out that the real
function F(k), measuring the lack of reflexional sym-
metry, can be related to the helicity. Similar to (4.1),
define the helicity correlation

H(x, r)=(27/L)*{w (X)U (x + 1)), (4.11)
which in the Fourier space becomes
H(r) == (2n/LY 7 ik e ;1 in(k) exp(ik - 1). (4.12)
Introducing (4. 10) into (4. 12) and replacing
(27/L)*%, -~ [ dk, we obtain the spectral form
Jon Lee 1365



H(O):f dk%’%),- (4.13)

Under the pseudo-isotropy assumption, (u**(K)u*k))
(1 #2) are also the scalar function of 2. We can then
relate F(k) to the helicity (3. 10):

F(k)/47k? ~ ik ({u} (k) % (k) — (P(k)ut*(K))). (4. 14)

5. PROSPECTUS FOR FUTURE WORK

The TI representation has been presented for both the
2D and 3D homogeneous flows. This appears to be more
powerful than the usual Fourier-amplitude representa-
tion: First of all, the incompressibility is built into the
equation as in the vorticity equation. Secondly, for a
given wave vector the number of dynamic equations is
one less than that of the Fourier-amplitude equations.
Thirdly, in the inviscid limit, the 2D flow conserves
energy and enstrophy, whereas the 3D flow obeys the
energy and helicity conservations. Fourthly, we can
categorize the entire family of TI’s into two classes in
2D and four classes in 3D, according to the geometry of
triad wave vectors. Lastly, the isotropy conditions in
3D are the reflexional, rotational, and spherical sym-
metries in the wave vector space. On the other hand,
polar symmetry is all that we need for the 2D isotropy.

Attempts have already been made fo apply the TI
representation to turbulence problems. We shall men-
tion here a few of them which are of the immediate con-
cern:
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(i) The companion paper® provides the proof that ener-
gy and enstrophy are the isolating constants of motion
in 2D, whereas the 3D flow has energy and heljcity as
the isolating constants of motion. The existence of the
quadratic constants of motion justifies the canonical
equilibrium distribution.

(ii) The TI representation is well suited for the formu-
lation of nonisotropic turbulence ® because one can
quantify nonisotropy in terms of departures from the
three symmetry requirements.

(1ii) We would expect that this representation is also
useful for the simulation work, for it involves one less
dynamic equation than the Fourier-amplitude rep-
resentation. Besides, by selecting certain classes of
TI’s, one might simplify the turbulence dynamics in a
systematic fashion without gross misrepresentation.
This is purely a conjecture at present, and we wish to
explore this in another report.
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Isolating constants of motion for the homogeneous turbulence

of two and three dimensions
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For the inviscid eddy motion in a finite-dimensioned Fourier space, it is stated that energy and enstrophy are the
isolating constants of motion for the 2D homogeneous turbulence. In contrast, the 3D isotropic turbulence has
energy as the only constant of motion. If we relax the reflexional invariance, however, helicity emerges as
another invariant; hence energy and helicity are said to be the isolating constants of motion for the helical
turbulence. Although these are the key assumptions in the construction of equilibrium distributions, they have
heretofore been accepted, without proof, as a natural property of the Navier-Stokes dynamics. This paper
provides the proof. We have shown here that quadratic constants of motion for the individual triad-interactions
collapse to energy—enstrophy in 2D, but to energy and helicity in 3D.

1. PROBLEM STATEMENT

Following the statistical mechanical argument,
statistical equilibrium states have been deduced for both
the 2D and 3D homogeneous, inviscid turbulent flows.

In 2D, the equipartition of energy—enstrophy among the
Fourier modes follows directly from the canonical
distribution which is a function of energy and enstro-
phy.! I we suppose that total energy is the only isolat-
ing constant of motion for the 3D isotropic turbulence,
then energy equipartition is the immediate conse-
quence2‘4 and hence the equilibrium energy spectrum of
the form %%, Now, as Moffatt® has pointed out, helicity
emerges as another constant of motion when we relax
the reflexional invariance of isotropic turbulence.
Kraichnan® has therefore modified the 2* energy spec-
trum by incorporating both energy and helicity into

the equilibrium distribution,

As one might infer from the above, the existence of
statistical equilibrium states is crucially hinged on two
things: One is the knowledge of isolating constants of
motion and the other is the Gaussian property of
equilibrium distribution, i.e., the canonical distribu-
tion. Note that the canonical distribution can lead to
equipartition states only when constants of motion are
of the quadratic form. In the classical statistical
mechanics, “® energy equipartition is deduced for an
isolated mechanical system which has the Maxwell—
Boltzmann distribution as equilibrium solution of the
Liouville equation. If there is another constant of mo-
tion besides energy, the trajectories will be restricted
to the intersection of the energy surface and a hyper-
surface specified by that constant of motion. Then,
energy equipartition is not possible because the trajec-
tory cannot cover every extension of the energy sur-
face, i, e., the metric decomposability,

In this paper, we shall prove that energy and enstro-
phy are the quadratic isolating constants of motion in
2D, whereas the 3D homogeneous turbulence has energy
and helicity as the constants of motion. In the so-called
triad-interaction (TI) representation, % we have decom-
posed the quadratic nonlinearity of homogeneous turbu-
lence into the TI’s extending over infinitely coupled
triad wave vectors. Since each TI has two constants of
motion (Sec. 2), the main point of investigation is the
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fate of isolating constants of motion for the individual
TI’s as they are coupled according to the Navier—
Stokes dynamics, In 2D, the constants of motion of each
TI correspond to the individual energy and enstrophy
respectively. Then, coupling the TI’s of the 2D Navier—
Stokes equations, we find that quadratic constants of
motion for the individual TI’s collapse to total energy
and enstrophy (Sec. 3). The situation is, however, quite
different in 3D. There the energy and helicity conserva-
tions are observed by two groups of TI’s. Strict
isotropy admits only one group of TI’s, Upon coupling
these TI's, it is found that all but one constant of
motion become destroyed, thereby leaving total energy
as the only isolating constant of motion for the 3D
isotropic turbulence (Sec. 4A). When the reflexional
invariance is relaxed, the other group of TI's alsc
comes into play. Coupling them, however, constants of
motion for the individual TI's collapse to helicity (Sec.
4B). Hence, total energy and helicity survive as the
quadratic isolating constants of motion for the 3D homo-
geneous turbulence,

2. THE TRIAD-INTERACTION SYSTEM

In the companion paper® (called hereafter I), we have
presented the detailed categorization of TI’s which con-
stitute the nonlinear dynamics of both 2D and 3D flows,
It therefore behooves us to investigate here the con-
stant of motion of a single TI system (I, 2. 3) written as

u(ky) = — i gu* (ko)u* (ky),

u(Ky) = — i poe* (Ko)u* (Ky),
a(ky) = = i paue* (kp)u* (Isy),

2.1)

wher_e ki +k2 +k3 = 0’ and ¢1 = 51:111:2. k3) 9= 5::2 k3, kys
$3= Pryixy, 5+ This is identical to the 3-~complex-mode
system numerically investigated by Kraichnan. 1% The
energy—enstrophy conservation (I. 3, 12) is assured by

¢y + APy + A3y =0, (2.2)
where a,=c, + ¢,k (¢4, ¢y =const). Now decompose (2. 1)
into the real and imaginary parts by u(k,) =4, +iB,:
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Ay 0 $14, B,

A, 0 $2B3A;
Aa _ 0 _ 0
By ¢1B,B; 0
B ¢2B3By 0

By $3B1B; #3414,
$1B,A;3 0

0 P2A3B,

- 3418, _ $3B1A, @.3)

0 $14243
B2A34, 0
0 0

This conserves energy—enstrophy because (2,4,
ayA,, ..., a3B;) is orthogonal to each and every vector
in (2, 3).

Prior to investigating (2. 3) in its entirety, insight
may be gained from a simpler 3-mode system repre-
sented by any vector, e.g.,

By =¢(B,B,,
B, = ¢y By By, 2.4)
és =¢3B By,

with the constraints
1+ P2+ ¢3=0, (2. 5)
Rlpy +Ripy +kibs =0, (2.6)

We notice, however, that (2.4) is the classical Euler’s
problem!! of a rigid body moving with one point fixed
under no external forces, Since the energy

(B + B} + B}) =e, 2.7

is the constant of motion, the trajectory must lie on the
energy sphere. But we also find that

£(B - Bi$,/¢,) =const,
#(B} - Bip1/¢3) =const.

Clearly, the linear combination of (2. 8) is also a con-
stant of motion: '

3[(B+7)B} - B(b1/d2)B} — v(¢1/$3) B3| =const,

where S and y are the scaling constants, The trajec-
tories are therefore restricted to the intersection of the
energy sphere and the ellipsoid (2. 9), i.e., the polhode
of Poinsot’s geometric solution, With the choice of

== (q’)z/qbi)k% and y=— (q‘>3/¢1)k§, (2. 9) reduces to the
enstrophy

3(k3B} + R3B} + k3BY) = w,

2.8)

(2.9)

(2. 10)

provided (2. 8) is obeyed. Of course, all this could have
been deduced alternately from the analytical solution in
terms of the Jacobian elliptic functions.

Returning to the complete system, we now look for
constants of motion of the quadratic form
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3
27 (@,A%+ o, 3B} = const.

iz

(2.11)

—

Here, ¢; must satisfy the equations imposed by (2. 3):
Oyhy + Qghy + Qb3 =0,
Qg+ Q5dy + 303 =0,
Gypy+ Qapy + Q33 =0,
Gy + G5y + Ggp3 =0,

Without circumlocution, we consider the case @ = ay,
Qp =0, &y=0g Then, (2.11) and (2.12) reduce re-
spectively to

afully) |+ o [ulky) |2 + g ulks) |2 = const,

(2.12)

(2.13)

iy + Qg + Qg3 =0, (2.14)

Posed in this way, the constants of motion are solu-
tions of (2.14). Obviously, the solution vectors a!
=(1,- ¢4/, 0) and &*=(1,0, - ¢4/ ¢3) correspond to
(2. 8). Also the linear combination

a=((B+7), - Boy/ b2, — vd1/b3),

is a solution corresponding to (2. 9). In view of (2. 5),
(2.15) reduces to ¢®=(1,1,1) with B=— ¢,/¢; and
y==¢3/}y. It further becomes a* = (k], k3, k%) with
B=—Fkipy/ by and y=—Ekid,/¢,, when (2.6) is obeyed. In
order words, if (2.5) and (2. 6) are imposed, the solu-
tion (2.15) can be spanned alternately by of and a“,
Geometrically speaking, « is in a plane perpendicular
to the vector (¢4, ¢y, ¢3). Let us call it the o plane,
Since the nonlinear interactions are built up of TD’s,
we can determine the isolating constant of motion of a
turbulent flow by the intersection of the « planes.

(2.15)

3. TWO-DIMENSIONAL FLOW

The TI’s of the 2D flow have been grouped in (I 2, 12)
up to the fifth-order lattice shell. Since each TI has two
constants of motion, we shall show here that coupling
TI's a la (L 2.12) does not generate extraneous con-
stants of motion. In other words, the intersection of
a planes is a hypersurface spanned by ¢ and a® in an
appropriate Fuclidean space, Denote the wave vectors
in plane lattice by k= (1), k= (), k3= (), ke= (), ks =(}),
ke= (5), k; = (g), kg = (S)’ ete.

A. The 3 X 3 lattice system

For constants of motion of the quadratic form

8
2 o |ulk;)|?=const,

%

: (3.1)
#3,5
the three vectors in (1. 2. 2) impose the following
conditions:
Oy P, 1y, kg T C2Pry 1 kg + 5 Prging,x, = O
Oy, 1xp kg + CaBryirgry + agbrgiry,x, = 05 3.2)
0’251:2 Xy * Q4$k4lk7, Xt C";axﬂxz, = 0.

Since the first two are redundant because of (I. 2.10),
we may consider only one of them, say

Gychyg + Qayp + gd13=0, 3.3)
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where ¢11= Gy ik, xp P12= Pryikgxp P13= Prgingxys
together with

3.4)

Furthermore, in view of (I, 2, 11), the last of (3. 2) gives
rise to @, = a4 and &;= arbitrary. In this way, the con-
stant of motion for the 3 X3 lattice is determined by a
single equation (3. 3) identical to (2. 14), hence total
energy and enstrophy are the only isolating constants of
motion.

Qg =0y and Gg= G,

B. The 4 X 4 jattice system

Consider constants of motion
15
i§ a; ju(k;)|® =const.

#7,10

(3.5)

After eliminating redundant relations, we obtain from
the first two square brackets of (I. 2. 12)

C1 Pk, 1kp, kg + 2Py kg kg + X6 Prglkg xy = 05
Oy P 1k, xyq + 5P kg kg T @11 Py kg, x5 = 0

01D kg by * U6PrgIkg, £y + V12Pkys 1ky, 2= 0 5.6)
_ — — .6
%Py kg kpp T X3Prgings,ky + H12Pk 1k, x5 = 05

Py 1xg, k1 + X5Pig ikgp, by + V12Prpp1k4 x5 = 05

Py kg by + L6Prgieggy iy T X13Pry51k,, 5= 0

with oy =@, ag=0y, Q=05 Gy = a5, and oy = Qy4.
Abbreviating the coupling coefficients by ¢,;, we put it
in the matrix form

b1y P2 0 0 ¢35 0 0
b1 0 0 e O o3 O
b3t 0 0 0 3 0 o3
0 o4 dpp 0 0 0 oy
0 o5y 0 d53 0 0 53
0 bt 0 0 g 0 0 oy

oo oo o

where the column vector a =(ay, ay, ag, @z, a5, Oyq, Gy,
ay3). Since the rank of coefficient matrix is 6, the
solution can be spanned by two vectors of the dimension
8:

a=pal +ya?, (3.8)

where

at=(1, = 611/ b1z, (D11041/ 12 + Pasbs/ Ds3)/ Dazy D1/ Dz, O,
= (b1 + Doa D1/ D52)/ bag, = D31/ B3z, 1101/ D12063),
a®= (1,0, b3 0o/ Daatss, dssba/ Dsadazs = b11/ by,
= (Pa1 + Babar b/ D53033)/ basy = Do/ gy D11Des/ D13Pes).
Here, py=yihs/ b1+ B31055/bss and py = day — 15 ban/
¢13. Using the energy constraint
b+ Ppp+di;3=0, (F=1,...,6),

we can reduce (3.8) to a®=(1,1,1,1,1,1,1,1) with
B=- rpu/dm and y=— ¢13/byy. Also, invoking the en-
strophy constraint

(3.9)

1369 J. Math. Phys., Vol. 16, No. 7, July 1975

Rl + R+ kib13=0,
Bl Gog +R3day + Ri1a3 =0,
ki dgy +R5bs +kird33 =0,
R34y +R3b g + Riadgs =0,
iy + 3Py +Riadss =0,
i gy + k§dgy + ki3hg3=0,

(3. 8) reduces to a“ = (&5, k3, k%, k2, k3 kS, kY5, RY,) with
B==kidio/ Py and y=—kipy/dy;. We have thus shown
that @ and a” span the solution in the 8D Euclidean
space. That is, coupling six irreducible TI’s does not
generate extraneous constants of motion, hence this
lattice system has no isolating constant of motion other
than total energy and enstrophy.

(3.10)

C. The higher-order lattice system

For the 5X5 lattice system, the analysis becomes
very tedious due to the proliferation of TI's; however,
the topological structure of constants of motion re-
mains the same, Considering all the TI's in (L 2.12),
we now obtain a system of 20 equations but only for 14
unknowns [note that both (3. 3) and (3. 7) are under-
determined systems]. For this over-determined system,
we find that the rank of coefficient matrix is 12 and
hence af and a¥ again span the solution in the 14D
Euclidean space. For a lattice of the higher order, the
rank of coefficient matrix cannot be less than the num-
ber of unknowns by more than 2 because the system is
always over-determined. This therefore assures that
the intersection of the a planes is spanned by &° and
a®, Consequently, the 2D flow has no isolating constant
of motion other than total energy and enstrophy.

4. THREE-DIMENSIONAL FLOW

Consider the Hermitian matrix

|t Qe [ et oo™ i)\ @ 1)
Wt Gk,)  [at k)]
As pointed out in Sec. 3B of I, the trace is energy
el (k) |2+ ek, |2, 4.2)
and helicity is given by the off-diagonals
ik (! ()™ (k) — o (R ) * (k). (4.3)

Since the energy and helicity conservations are mutual-
ly exclusive constraints on the two separate groups of
TI’s, we can investigate constants of motion for
isotropic turbulence independent of those of helical
turbulence.

Before examining the 3 X3 x3 lattice (1. 3. 16), we
shall establish constants of motion of the fundamental
TI under the various triad wave vector configurations.
Labeling K, P, and Q by ky, k,, and k,;, respectively,
we rewrite (I. 3, 8) by abbreviating the coupling coeffi-
cients by ¢;;.
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* (ky) bygte* Iy Jut* (ks) Bageet* (I ) (ky)
@t (ky) b gt * (RgJue* (k) bante™* ()t * (&y)
4! (ky) - b ya2et* (y ) (ky) . 0
(k) 0 0
(k) 0 0
4 (Ks), 0 Dogt* (I ) (k,)
D™ (Ky)ue* (Ky) Bage™* (ko ue* (i) 0
0 0 Bt * (Rg)u** (k)
¢33u1*(k1)142*(k2) . 0 ¢53u2*(k1)u1*(k2)
0 0 b (p)ue ' * (k)
b gt * (Rg)ue'* (ky) & gate** (g )u'* (k) 0
0 b aqu™* &y )t (ky) 0
0 0 0
Bzt (eg)u™ (k) 0 0
+ 0 + Pt (kg™ (ky) + 0 4.4)
g™ ()™ (k) Bryte™* () * (k) D g1u™* (Ko )uu** (K3)
0 o™ (g™ (k) oot (g™ (k)
Dt (KyJu'* (k,) 0 D gate™* (KyJu* (Ky),

The ¢;; obey the energy constraint (I. 3. 9),
i+ P+ di3=0, (=1,...,8),
and the helicity constraint (I, 3. 11),

(4.5)

=Ry +Rebp +RyPgs =0,
~kiday +Rydg — k353 =0,
—Ripsi—Radse +R3g3=0,
=Ry — Radge —kydey =0,
Risy+hatyy +R3d23=0,
kidgy +Rapys — R3dy3=0,
kidg —kopyp +R3¢y3=0,
kydg— kados — k3dy3=0.

A. Isotropic turbulence

Consider the constant of motion of the energy form
(4. 2)5

3
> ? , afu*(k;)|*=const. 4.7

n=1,2

-,

—_

The eight vectors in (4. 4) impose that
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11 P12 b3 O 0 O

P be 0 0 0 oy
$31 0 b33 0 gy O
dsg 0 0 0 oy ¢y

0 ¢5 d53 ¢y 0 O
0 dg2 0 gy 0 &g
0 0 ¢y ¢y ¢ O
0 0 0 ¢y dp dg

2 2
where the column vector a=(ai, o}, al, of, o}, o),

First of all, for the symmetric pair class (m =2)
(Sec. 3C of 1), ¢;; are typically nonzero. One may re-
duce (4. 8) to a form

4.9)

where ol and af are expressed in terms of a} and al.
Without explicitly presenting here the expressions for
#;;, we simply state that the rank of (;;) is 1. This in
turn implies that the coefficient matrix of (4. 8) has the
rank 5, hence the solution is fa®, In other words, the
intersection of eight & planes is simply the vector o®
itself for the TI of w2 =2. Secondly, for the isosceles
class (m=1), (L 3.14) reduces (4. 8) to
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(Pa1 + D22) Po3

(a1 +Dg2) Oy3 ("‘}) 0,
(o1 + Pg2) Pgs J\3
(Pg1+ Dga) Dgy

where o} = ol = o} =0} and o} = arbitrary. Because of

(4. 5), the coefficient matrix of (4. 10) has the rank 1,
hence the solution is again paf for the TIof m =1,
Lastly, the situation is quite different for the diagonal
and off-diagonal plane classes (m =1’ and 2'). There, in
view of (L. 3.15), we find that (4. 8) reduces to a single
equation

afdgy + Gpgy + Alepgg =0, (4.11)

with o = a} = o}, Therefore, the TI's of m =1’ and 2’
have two constants of motion, whereas the TI’s of m=1

and 2 had none other than energy.

4.10)

Having separately examined TI's of the different
classes, we are now in a position to collectively in-
vestigate constants of motion for the 3 X3 X3 lattice,
For the notational compactness, let us relabel the wave
vectors in cubic lattice

1 1 2 2 1
ke=l1) ke={2] ky={1}, Kk={2]), k=[1)
1 1 1 1 2
1 2 2 3 3
k(;: 2 ) k7: 1 » kB" 3 » kB' 2 ’ k10= 3 1)
2 2 2 2
2 2 3 3
ky={2 ), kp={3), kp=[2], ky={3]
3 3 3 3
Then, for the constant of motion
14
21 uZﬂ of |u*(k;)|? = const. (4.12)
t= =1y

the equations that a} must satisfy are (u,p, =1, 2)
ot b finry + 05 Bl i uy + CEBEIRR L, =0,
Qg (M‘i fk'e, kot Qétafslfii;, Kt 0&6;1;»{:? x =0,
o By 'R |x5, kip + QL BL il x, + CHBE T, =0,
oy d)zl |k7, T O ¢k71114, Kt Qi‘@ﬁlﬂg.n =0, (4. 13)
a; ¢k2 lka, g O3 ¢k3fkm,k2 + 0;‘2@;;"@. k=0,

7212, 12,2 ol F2N2
oAt v + afd i, + 1By kg k5 = 0,
7212, 212,2
APy, iy, + a4¢k4|k10,k1+a10¢kwlkl,k4 0,
T212,2 27212,2
04¢k4|k5, kgt OB ok, OTuBh g ks = O,
1o 02o o2
with az—a3—a2—a3, og —0‘7, ag —Qa, afy=af;, oj=af

=aly, ai=af=0ol;, and al=col=al, Equation (4.13) can
be traced to TI’s in the order that they appear in
(L. 3. 16).

Since the first four of (4. 13) refer to the TI of m =2,
each has the full representation (4. 8). The fifth refer-
ring to #m =1 has the reduced form (4, 10), whereas the
last three all referring to m =1’, are of the form (4. 11).
Summing up, (4.13) represents 39 equations for the 24
unknowns, some of which are, however, constrained by
the equality relations. Writing it in the matrix form, we
can show that the rank of coefficient matrix is 23, and
hence the solution is ga®, That is, the intersection of 39
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a planes is along the vector of in the 24D Euclidean
space. For a finite cubic lattice of the higher order, the
number of TI's always exceeds that of the unknowns

[see (I.3.17)], so that the rank of coefficient matrix
cannot be less than the number of unknowns by more
than 1. This therefore assures that a® is the intersec-
tion of & planes for the TI's of a finite-dimensional
lattice system. Hence, total energy survives as the only
isolating constant of motion for the isotropic turbulence.

B. Helical turbulence

If the reflexional invariance is relaxed, the off-
diagonals of (4.1) are no longer zero. Hence, helical
turbulence will admit constants of motion of the helicity
form (4. 3)

3
?_“,1 i(odul(k,)u?* (k,) - odu?(k,)u'* (k,)) = const.  (4.14)

In analogy to (4.8), we have from (4. 4)

¢y 0 O 0 -9¢n —dg

P20 0 P53 O - O

b3 b2 0 0 0 - ¢

G4y g2 b3 O 0 0

0 0 0 —¢s5 —¢n —du =0 (4.15)
0 0 ¢y3 —dgy —dby O

0 ¢12 0 =0y 0 -y

0 ¢z ¢33 ~dg O 0

For the symmetric pair class, we can reduce (4. 15)
to a form similar to (4. 9).

by g2 .

Yor Y2 (0‘1>:

oy ¥ap J\a 0. 4.16)
Yoy Vg

where o} and o} are expressed in terms of of and of.
Since the rank of (y;,;) turns out to be 1, the TI of m =2
has the solution Ba*, where a"=(ky, ky, ks, by, by, k3),
Next, for the isosceles class, (I 3.14) reduces (4. 15) to

gd)ii - ¢72)) -~ g3 .

b3+ b))  — Py (ozi) _

~ (g2 + bss) — b Na2) ™0 4.17)
(2= 01) - a3

with o} = a}=a?=0} and o} = arbitrary. By using the

numerical ¢;; values for a typical Tl of m=1, we can
check that the coefficient matrix of (4. 17) has the rank
1. Hence, the intersection of eight o planes is again the
vector a®,

Finally, for the diagonal and off-diagonal plane class-
es, (L 3.15) reduces {4.15) to

Pt O d53 O =gy O
$3 P52 O 0 0 =~ dg)a=0.
0 o b33 — oy 0 0

The rank of coefficient matrix is 3, hence the solution
is

(4.18)
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a=pal+ya?+8a’, (4.19)

where
a!=(1,0,0,0, ¢/ bs, $31/Ds3),
a?=(0,1,0, - ¢21/ g1, 0, d52/ ba3),
@’=(0,0,1,— b3/ Dg1, — b5/ bg2, 0).

Since (4. 19) would reduce to a®* with the choice of 3
=ky,y=ky, 0=ky, it is concluded that the TI's of m =1’
and 2’ have two isolating constants of motion besides
helicity, while the TI’s of m =1 and 2 had none other
than helicity.

Following the discussion of Sec. 4A when we collec-
tively examine the 12 TI’s of the 3 x3 x3 lattice, the
intersection of « planes turns out to be along the vector
a" in the 24D Euclidean space. This is because there
are still more equations than the unknowns, but the
rank of coefficient matrix is just one less than the num-
ber of unknowns. Consequently, for a cubic lattice of
the arbitrary order, helicity remains as the only con-
stant of motion for the TI’s related to the off-diagonals
of (4.1), just as those related to the diagonals have
none other than energy.

5. EQUILIBRIUM DISTRIBUTIONS

Total energy and enstrophy are the isolating constants
of motion for the 2D homogeneous turbulence in a finite-
dimensional Fourier space. Consider the canonical dis-
tribution 7, which is a function of the energy and en-
strophy of N Fourier modes

N

F2= 11 [ale,)/m] expl- alk,) [ulk,) [*).

n=

(5.1)

where a(k,)=c, +cyk%, Following the classical statistical
mechanics, ! one can readily show that (5. 1) is the
equilibrium solution of the Liouville equation for the

2D inviscid motion of N Fourier modes, Here the con-
servation property (2.2) plays the essential role. We
may, perhaps, justify the Gaussian form for the in-
viscid eddy distribution (5. 1) by invoking the central
limit theorem, !* although the actual turbulent distribu-
tion is far from being Gaussian. The modal energies
averaged over 7, are

(lutk,)|?) =1/a(k,),

implying energy—enstrophy equipartition. This then
leads! to the equilibrium energy spectrum (I. 4. 7)

~k
Cy +Czk2 ’

(5.2)

E,(k) (5.3)

for the 2D isotropic turbulence,

Since the equilibrium distribution of the 3D homo-
geneous turbulence must be a function of energy and
helicity, we write the canonical distribution 7, in the
form (see the Appendix)

N
detD
Fa= 1 —5— expl- (u, Qu)]. (5.4)
Here,
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ui(kn)>
u= s
(uz(kn)
[ €3 —icyk, _[cy+edk, 0
Q_(iC4k" Cg >’ Dn-( 0 Cg—C4k" ’

and (, ) is the scalar product. Taking average of (4.1)
over 75, we get

(Jut@) [ @) kD _[ €o/C =icik,/C
(PR* K, ([u&)[?) ick/C  cy/C
(5. 5)

where C :cg— cik?,. The equilibrium energy spectrum
(1. 4. 9) is given by the diagonals

cqk?
Es)~ 7 (5. 6)
and the off-diagonals give the helicity spectrum
(L 4.14),
4
Cik (5.7)

Lk
Fi#) - 3R’

agreeing with Kraichnan’s® results. Kraichnan has noted
that the equilibrium dynamics in 3D are devoid of the
positive/negative temperature states of the 2D flow. 417
This is because energy and enstrophy are the invariants
simultaneously constraining each and every TI in 2D,
hence they can compete with each other for dynamic
dominance. In the 3D flow, however, the energy and
helicity conservations are mutually exclusive restric-
tions on the diagonal and off-diagonal elements of (4, 1),
They will therefore affect dynamics of the two distinct
groups of TI's. When we impose the reflexional in-
variance, the cross correlation {u”(k,)u**(k,)) {(u#2)
vanishes identically, so that the covariance matrix

(5. 5) reduces to a diagonal form with the same ele-
ments, Thus the energy spectrum goes over smoothly
to the energy equipartition state in the limit of zero
helicity (¢, —0).

APPENDIX: DERIVATION OF THE CANONICAL
DISTRIBUTION (5.4)

In view of (4. 2) and (4. 3), we write 7; as a function
of the energy and helicity of N Fourier modes

N
F3= 10 Ky exp[~ c5(|ul ()| + [ () [*)

= ic kol (K, )u?* (K,) — u? (k) u'* (k,))], (c;,cq=const),

The immediate task is the evaluation of the normaliza-
tion constant K,. To this end, consider the integral

I={ exp[- (u, Qu)]du.

Since @ is Hermitian, the quadratic form can be diagon-
alized by u=Px [P=2-1/2( )]

I=[ exp[-x, D,x)]dx.

We can now normalize the quadratic by

~1/2
_p-i/2, -1/2_[(€3+cqky) 0
X n Dn 0 (03—04}3")-1/2 .
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Whence,
K= (detD,)"? [ exp[- (z,2)]dz =n%(detD,)™ /%
To get the last equality, we have used the manipulations

of complex Gaussian distribution, ¢
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This paper investigates the invariance properties of second-order variational problems when the configuration space
is subjected to an r-parameter local Lie group of transformations. In particular, the recent results of Hanno

Rund on first-order problems are extended to the higher order case: A new set of fundamental invariance
identities are derived for single and multiple integral problems, and new proofs of the Zermelo conditions and
Noether’s theorem are presented. The results are applied to a variational problem whose second-order

Lagrangian depends upon a scalar field in Minkowski space, and some conformal identities are obtained.

1. INTRODUCTION

By a second-order variational problem we mean a
variational problem whose Lagrange function depends on
derivatives up to the second order. In this paper we in-
vestigate the invariance properties of such problems
when the configuration space is subjected to an v-param-
eter local Lie group of transformations. The signifi-
cance of second-order problems, particularly in elasti-
city and relativity, is well known.

The invariance theory for first-order problems, i.e.,
problems in which the Lagrangian depends only on first
derivatives, is well documented. In particular, we point
out the now classical paper of Noether® in which she
shows that first integrals, or conservation laws, can be
obtained directly and explicitly from the invariance
properties of the variational integral, be it of any given
order. More recently, Rund? has derived a new set of
fundamental invariance identities for first-order prob-
lems which provide simple access to the Noether
theorem and have interesting consequences of their own.
Some of these consequences have been explored in a
series of articles by Logan. %5

The goal of this communication is to extend Rund’s re-
sults to second-order problems and to investigate the
consequences thereof. It will be shown, for example,
that Noether’s theorem in the higher derivative case
follows simply from the second-order invariance iden-
tities, thereby providing a new, simpler proof of the
Noether theorem which avoids completely the so-called
“fundamental variational formula” which expresses the
total variation of J when both the dependent and indepen-
dent variables undergo “infinitesimal” variations. To a
certain degree, this formula is complicated and difficult
to prove rigorously (see Anderson® for a derivation in
the higher derivative case). In addition to leading to
Noether’s theorem, the invariance identities that we
shall obtain will provide a method for determining
groups of transformations under which the fundamental
integral is invariant—and therefore Noether’s theorem
may be applied to determine first integrals of the Euler
equations, which in the present case are fourth-order
ordinary differential equations (in general nonlinear) .
Interpreted still differently, the invariance identities,
which will involve the Lagrangian L and the generators
of the group of transformations, can be used to charac-
terize all Lagrangians which are invariant under a
given group of transformations. We also shall have
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some brief remarks and comparisons to make concern-
ing canonical variables for second-order problems, as
well as give a new derivation of the Zermelo conditions
for these problems. Finally, we shall apply the results
to obtain a set of invariance identities for multiple inte-
gral problems which are invariant under the so-called
special conformal group in the case that the field func-
tions are conformal scalars.

2. INVARIANCE CRITERIA

To carry out the above program we shall study the
multiple integral problem and deduce the results for
single integrals as a special case. We consider, then, a
variational integral whose Lagrangian depends upon m
independent coordinates, » “field” functions, and first
and second derivatives of these field functions. Notation-
ally, we have

J:'[GML(L“,...,t’";x‘(t),...,x"(t);,.., W), e,

R (), e e )t e o dpm 2.1)

" where G,, is a simply-connected bounded region in R™,

t=(*,...,M), and
axt ., %

Ho =5 Fea= g
The “dots” are over the latter quantities to remind us
that the quantities are derivatives. Here, and in the se-
quel, small case italic indices j, k, [ range over
1,...,n, while lower case Greek indices «, f5,... range
over 1,...,m. The summation convention will be used
freely, with one additional notational convenience; in the
Lagrangian we assume the second derivatives 55&3 occur
only when « < 8. Therefore, in the summation conven-
tion, when terms of the form Ly , (or 8°L/3X%,,) are
summed on either index o or B, we assume that it is
carried out in such a way that o < 8. We also assume
that L is of class C® in each of its arguments and that
the x*(f) are of class C*(G,).

We now consider the »-parameter family of
transformations

?a:(ba(fyely-";er):
(2.2)
k= Pr(t, x€t, ... ,€7)
on (¢, x)-space where t=(t*,...,f) and x=(x*,...,x").

We assume that ¢* and ¢* are of class C* in each of
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their arguments. It is further assumed that to the values
el =e2=... =¢7=0 of the parameters correspond the
identity transformation f=¢, ¥=x. Also, we suppose
that the transformation 7 = ¢*(¢,e!, ...,e") can be in-
verted to obtain {*=T({,e!, ... ,e"). Then, any m-di-
mensional hypersurface x=x({), /€ G,, in (f,x)-space
gets mapped via (2.2) into an r-parameter family of
hypersurfaces ¥=%(7) in (#,%)-space. This family is
given by

o=y (T({,e), x(T({F,€)),e) =%*(T)
where we have denoted € = (€, ), T(t,e)

=(T'(,e), ..., T™(f,€)), and x=(x!, ..., x").
tant to note that, according to definition,

x* (D (t,e)) == (t, x(f) ,¢) (2.3)

where ¢ =(o', ..., ®™). At this point we remark that we
have required that the 7 transformation in (2.2) not de-
pend on x in order to insure the invertibility of the
transformation for every x(t).

It is impor-

Since e=0 gives the identity transformation, it follows
from expanding the right-hand sides of (2.2) in a Taylor
series about ¢ =0 that

Fe=t® +este () +ole),
(2.4)

Tr=x* +es 5 (t,x) +06),

where ofe) are terms for which ofe)/llell = 0 as llell — 0.
The quantities 77 and £* are given by

. (20" Gl
=5, ae0= (),

where (), denotes the fact that the quantity is to be
evaluated at e=0. The quantities 7¢ and £ are common-
ly called the generators of the infinitesimal transfor-
mation given by (2.4). Here, and subsequently, the in-
dex s will range over s=1,...,7.

2.5)

We are now in position to define what is understood
by saying that J defined by (2.1) is invariant under the
r-parameter family of transformations (2.2). Essen-
tially, we require that J(x(7)) - J{x(#)) is ofe) plus
terms which are divergences and linear in the ¢*. More
precisely:

Definition 1: The fundamental integral defined by
(2.1) is divergence-invariant under the r-parameter
family of transformations (2.2) if, and only if, there
exist m functions F¥=F2(¢,x) of class C! such that

% ; N
W;‘7(.1_(?),.. > dite. . dim
—J' L e ™ () e 2, s @.6)
Gm

xR () e e ) dft e oo dim
—O(€)+€sf WF‘”(t,x(t))dtl--- dam
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for every region G,, for every e, and for every x(¢)
= (x*(#),...,x"#) of class C*.

3. THE INVARIANCE IDENTITIES

We now state and prove the following fundament re-
sult which relates the Lagrangian and its derivatives to
the generators of the infinitesimal family of transforma-
tions (2.4).

Theovem 1: If the fundamental integral (2.1) is di-
vergence-invariant under the »-parameter family of
transformations (2.2), then it is necessary that the
Lagrangian satisfy the » identity relations

L3
Lot +ka§'¢+ka<‘15 x"dr"‘)

dt*  TBdt®
A28 iy 4Ti_ v, ATy ., dPT
Yoo (dt“dtB ~He g e g ~Mgegp) G
dr¢ d
+ L. Fe —
Lo~ a Fs=0
where s=1,...,7, and the subscripts on L denote

partial differentiation.

The proof of this theorem is similar to the proof of
the first-order case given by Rund?; only a few addi-
tional difficulties are encountered. The basic idea is to
differentiate (2.6) with respect to ¢ and afterward set
¢=0. To this end, we obtain

i( (—1 Im
s LmLt,...,t ;
"ataatﬁ() ) t"'d—”‘)o

:I iFadtl . df.
G

ax*

.,E”(t),...,ﬁ(?),...;

dt®

We now change variables in the integral on the left
according to

= ¢a(t>€)-

Hence, we obtain

3 q ( -
2 L{t, ..., ™. ..
Oes e, ’

.- ) det<2;3) - dt"‘)o

j- QFFadtl e dm

where it is implicitly understood that 7* in the integral
on the left is given by (3.2). By differentiating under the
integral sign and noting that the resulting expression

is valid for all regions of integration G_, we conclude

(3.2)

D3k
T atfare?

m?’

that
%)) (3.3)
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3 ot dFg
+ (2 aet( T )=t

where we also have used the fact that

or*
det(at’3> =1.

An easy calculation (see Rund?) shows that

o . (97} _dre
(aes det(afe))o— Y (3.4)
Therefore, upon expanding 3L/3¢ in (3.3), we obtain

9 axt 9 *x*
I o 4 L kL 7. — ——-1 + L. —_— ==
(T T harls x’&(aes a’f“)o *’Zs(aes atﬁat“) 0

drg _dFg
dat*  dt*

+L =0 (s=1,...,7).

To compute the remaining two terms which are eval-
uated at e =0 in (3.5), we differentiate both sides of
(2.3) with respect to # to obtain

FY NG )
Next, we differentiate (3.6) with respect to e to get,
after simplification and evaluation at e =0,

R k ]
(a 8x) :&—kk ars 3.7)

(3.6)

des 3f° dt® @ g
To obtain (3.7) we also noted that

9 axX*\ _dEk <ig7_a) _dig
des ), dt®’ \aes 3%/, af

which follow easily from (2.4).

Now, we differentiate (3.6) with respect to # to obtain

°x*_ 3l° 3t axt %1 _ 9%x*
031 3 3B B AP RS T oF At

Differentiation of this expression with respect to ¢*
yields

(i az,w) _ g . odn . odre ., & 3.8)
s aral ), ararf  Togr " Fregp T Xegr g )
where we have again noted from (2.4) that

(i aﬁ“) _ &g (i a%?k) _ e

des o8 ) T drrdt®’ \aes afats), arart”

Upon substitution of {3.7) and (3.8) into (3.5), we obtain
the fundamental invariance identities given by (3.1) and
therefore complete the proof of Theorem 1.

4. THE SINGLE INTEGRAL CASE

We now specialize the results of the preceeding sec-
tions to singular integral
t e
J=[ PL{t,x,x,%)dt (4.1)
i,
where x=(*,...,x"), x=0(',...,x", and &
=(x',...,x"). This specialization can be realized by
taking w =1 in the preceeding discussion. Then, if (4.1}
is invariant up to a divergence under the v-parameter
family of transformations
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T=ol,e, ... 6,

4.2)
= r{t, x,€t, e,
then it necessarily follows that
BL aL (dt: ., dT
+ R S _ykIS
ot 8xk£ axk(df x dt) @.3)
oL (d%t -, dT, dz'r) dt, dF
s _owrfTs sy 47 %s s _
8x"<df2 o VaE) T
for s=1,...,», where
{29 » _ ad)’“>
r ()= (a ) (1, x) = (aes , (4.4)

Equations {4.3) are the fundamental invariance identi-
ties for single integral problems.

We will now show that the classical Noether identities
for single integrals follows easily from the identities
(4.3) (for multiple integrals the proof is the same). Be-
fore proceeding, we recall that the Euler equations
corresponding to the functional (4.1) are given by

_3L _d L & 3L

o dan Tap R 0 Foheeon

(4.5)
Essentially, the Noether identities state that » linear

combinations of the Euler expressions Ek(L) are diver-
gences (or exact derivatives). More precisely:

Theorem (Noether): if the fundamental integral (4.1)
is divergence-invariant under the v-parameter family
of transformations (4.2), then the following » identities
hold true:

. d AL d aL
- R _ AR -
E,(L)(g; - 5*r,) = [LTS+(a5’ck at a;de) (& ~37,)

aLd

ax dt (4.6)

D (g _gar) - F]
for s=1,...,7, where the 7, and £ are given explicitly
by (4.4). We note that (4.6) agrees with the expressions
obtained by Anderson.®

In order to prove the Theorem, the Noether identi-
ties involve at least fourth-order derivatives of the
functions x*(¢) [through the expressions d?/df?(9L/3%*)]
whereas the invariance identities involve at most
second order derivatives of the x*(#). This distinction is
quite important and it points the way to obtaining (4.6)
from (4.3). First, we note that the following simple
identities are valid:

OL. AL s 0L, BL 0L,
T e T T s PECE
.. 0L dT d (. oL ., 0L d oL
ka&k ﬁ_—a7<ka78>+ka78 (—i?—I—Ts,

vy AL d*7g d <
—_xR e = = —~ X!
axk df dt

oL d-rs> e AL dTs
T axk dt

4 daL)_..ia_L L
YAt s ar e s T X g s
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aL@__(aL k) d aLE

ax* dt  dt\ox® dat axk >

AL PE _d aLfg) & AL . (d L E")
O%F dF dt ax*\dt ) df* 9%k s at\dt 8x*>¢)"

When these expressions are substituted into (4.3) and
simplifications are made, the Noether identities (4. 6)
follow. Therefore, we have a proof of the Noether
identities which essentially involves only differentiation
and not a discussion or development of the total varia-
tion of the fundamental integral.

As an application of (4.3), we consider the case in a
so-called parameter invariant integral of the type (4.1),
in which it is assumed that it is invariant under arbi-
trary transformations

T=o(t,e)

which leave the x* unaffected. When this situation oc-
curs, the quantities £ vanish identically, and (4.3) re-
duces to

aL o 0L dTg aL dr, L P71 daTs
- - + —20
S g ¥ Y aE L a
or
oL .. 3L dar AL &t
- + - xR = - h — —i—.k——,,—— S — .
at s (L X o =2 Bx”) at F o e

Due to the arbitrary nature of the transformation (5.4),
we obtain the set of conditions

oL JL oL oL

EZO L- xk-a-F—2xkg-_0 xkgx—’“()
These are conditions that the Lagrangian L and its
derivatives must satisfy if the variational integral is to
be parameter invariant. These are the classical
Zermelo conditions for second-order problems, now
derived in a new way from the fundamental invariance
identities. See Rund’ for an ab initio derivation of these
conditions.

For future reference, we further note that if x(¢)
={x'(f),...,x"(t) is an extremum, i.e., it satisfies
the governing equations (4.5), then the invariance of
(4.1) under the »-parameter family of transformations
(4.2) leads to the ¥ equations

oL d JL
PR
LTS“L(a;ck a 8x”> (&3 ~x*7,)
E)L d b wn .
ax" T —— (& —x*1) ~ F,=const “@.7)

which are first integrals of the governing differential
equations (4.5). In different words, equations (4.7)
represent conservation laws since the left-hand-side is
constant whenever x(f) is an extremal. The latter fact
is generally what is taken to be Noether’s theorem.

From a practical point of view, the fundamental in-
variance identities (4.3) can be used to find first inte~
grals of a system of fourth-order ordinary differential
equations. Simply, the procedure is to determine, if
possible, the corresponding variational problem for the
given system, solve the invariance identities (3.1) for
7, and £* to determine an infinitesimal group of trans-
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formations under which the variational problem is in-
variant, and finally apply Noether’s theorem to deter-
mine first integrals. We remark that for certain fourth-
order problems a suitable Lagrangian may not be able
to be found.

To be more precise, if we rewrite the identities (4.3)
by expanding the total derivatives of 7, and %, then for
certain Lagrangians the identities become polynomials
in the %* and the products x*x’. Since these directional
arguments are arbitrary in (4.3), we may equate to
zero the coefficients in the resulting polynomial and
consequently the identities (4.3) are transformed into a
system of second order partial differential equations in
which the generators 7_ and z* are regarded as the un-
knowns. This resulting system of partial differential
equations can be regarded as a general set of Killing
equations (see Logan® for a complete discussion of this
matter for first-order Lagrangians.) Hence, in theory,
the above method provides a group-theoretic method for
determining first integrals of the governing Euler
equation.

5. CHARACTERIZATION OF LAGRANGIANS:
CONFORMAL IDENTITIES

Having shown that the fundamental invariance identi-
ties give rise to both a simple proof of Noether’s
theorem and to a method for determining first integrals
or conservation laws, we now discuss another impor-
tant interpretation of these fundamental identities,
namely, how they can be used to characterize classes
of Lagrangians which possess given invariance proper-
ties under a known group of transformations. In par-
ticular, Egs. (3.1) [or Eqs. (4.3) in the single integral
case] can be regarded as a system of  first-order
quasilinear partial differential equations in the unknown
Lagrange function L; the generators 7% and £* are de-
fined by the invariance transformation according to (2.5)
[or (4.4)] and the F* are the divergence terms which
serve to determine the type of invariance (F§ =0 for
absolute invariance). For first-order Lagrangians,
this problem has been discussed in detail in Logan?*,
example, there it was shown that if the fundamentat
integral (defined on four-dimensional space—time) is
absolutely invariant under the fifteen-parameter
special conformal group, where the Lagrangian depends
on a scalar function or on the components of a covariant
vector field and first derivatives of those components,
then it is possible to completely characterize those
Lagrange functions possessing the given invariance
criteria.

For

In this article we shall derive some conformal iden-~
tities for second-order problems in which the Lagrange
function depends upon a scalar field and derivatives up
to the second order. The fundamental integral takes the
form

J=[ L, ..., 08, 2, ..t 5,0,
° (5.1)
NN (LT ) R SN (R o BPRPD I /LR /o
where D is a cylinder in space—time. Following the
usual convention, we adopt the spacetime coordinates
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# =ict, ¥, £, * of special relativity, where #=-1 and
¢ is the velocity of light in vacuo. Therefore, the
Minkowski metric g, is given by g,,=0 if o # 3, and
Zea=1, a=1,...,4. In Minkowski space, the special
conformal group can be written explicitly as follows:

(i) transliations (four parameters)

Fo_ g0 pe (5.2)
{ii) Rotations (six parameters)

1=+ B W= - b (5.3)
(iii) Dilation (one parameter)

72— o 44 (5.4)
(iv) Inversions (four parameters)

T =t + (264, - P53, (5.5)

In (5.2) through (5.5), the parameters are ¢®, w* y,
and n*. In (5.5) 6¢ is the Kronecker delta. Above and in
the sequel lower case Greek letters will range over
1,...,4; we note that the index s of preceeding sections
has now been replaced by a lower case Greek index.

The scalar field is determined by the single field
function x(#)=x(f*, ..., ) which is invariant under
(5.2)=(5.5), i.e., ¥(¥)=x(#). Consequently, the gen-
erators £, are given by

Ex:O

in the case of each separate transformation. Therefore,
it follows from Theorem 1 that if the fundamental inte-
gral (5.1) is to be absolutely invariant under the con-
formal transformations (5.2)—(5.5), then

oL @ iL_.' dTg

PR e
oL o odr . dit . d7
Loy 4Te _y 4TS G Ts 5.6
8xa5< Yrogre T Xar gp T v g ar (5.6)
ars
+ —
LG =0

where the 72 are the generators of (5.2)—(5.5).

In the case of translations, 78 =5%. Substitution into
(5.6) yields the four identities
L,=0, a=1 (5.7

ta

yeis4,

which state that the Lagrangian cannot depend explicitly

upon the spacetime coordinates £,...,#.

Under the dilation, 7% ={* and so

aT™ o 0°T¢

B8 T8 3o T

Substitution of these quantities into (5.6) yields, after
simplification,
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oL . . AL
——x_ + =
ax, et P ar L

o

%,,=4L. (5.8)

Under rotations, 7§,,,=(63# -52t*) for (u,v)e S
={@1,2), 1,3), 1,4), 2,3), 2,4), (3,4)}.
Consequently,

dTa( )
—a = 05— 870%)

and

(,{Z‘Tof!!uz - dTaiEEvl =0
aifder — 0 dat*

In this case, the invariance identities (5.6) become

‘Muu == vaiu +qu}V - quL§VB +xVBL3'ru5 - xguL,'EBV

+3&BVL.;€ =0 (5~9)
B
where (uv) € S.

Under the inversions (5.5), we have f&=2f%¢, — P35y
and so the following relations hold:

dry dr¥

- o )\+ As o o :8,)‘
T 2(t%6) + P55 ~ 1952), i = 81
A 20637 + 503~ 5509).

After substitution of these quantities into (5.6) and
considerable simplification and rearrangement of in-
dices along with use of (5.7), we obtain the four
identities

(4L - L;a’.‘a - ZL-iaB.A"aﬁ)ﬂ + ‘Moqta

+ L}a T L

xa);\?a bt L;wfszo.

In conjunction with (5.8) and (5.9), these identities re-

duce to

L. %=L, (5.10)
o

x, tLs xg.
X EP%Y @ %58

We summarize our results in the following theorem:

Theorem 3: Let J be given by (5.1) where x(¢) is a
scalar function. Then, a necessary condition for J to be
absolutely invariant under the special conformal group
(5.2)—(5.5) is that the Lagrangian L satisfy the follow-
ing fifteen identites:

(i) &Ly +2%o5Ly  =4L,

(iii) m,,=0, (u,v)eS,

(iv) L-,-c(w)'cA =L

%oy Yo + L.iwa, A

where M, is given by (5.9).

v
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Conditions (i)—(iv) of Theorem 3 are conformal iden- (5.11) implies that L must be homogeneous of degree 2

tities that may be used as a convenient test for con- in the second derivatives.

formal invariance of a given Lagrange function which

depends on a scalar field. In the special case that L IE. Noether, Nachrichten Ges, der Wissenschaften Gottingen,
does not depend upon first derivatives of the field, but 1918 Math-Phys. Kl., 235 (1918).

only on the second, condition (11) becomes ’H. Rund, Utilitas Mathematica 2, 205 (1972).

3J.D. Logan, J. Math, Anal. Appl. 42, 191 (1973).
43.D. Logan, J. Math. Anal. Appl. 48, 618 (1974).

Xqsls ,=2L. (5.11) 55, D, Logan, Utilitas Mathematica (to be published).
®D. Anderson, J. Phys. A 6, 299 (1973).
By Euler’s theorem on homogeneous functions, Eq. "H. Rund, Ann. Math. Pura Appl. 55, 77 (1961),
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Simplified calculations for radiation reaction forces
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The Lorentz-Dirac equation of motion for the electron is derived by a new method which makes

tedious power series expansions unnecessary.

1. INTRODUCTION

The Lorentz—Dirac equation of motion® for the elec-
tron has been treated extensively in the literature.?
This diversity is mainly due to the fact that Maxwell
equations do not determine the radiation reaction forces
without ambiguity, essentially because of the divergent
electron self-energy. However, the general view seems
to be that Lorentz—Dirac equation describes correctly
the electron dynamics. The standard derivations of
these equation are rather long and tedious in spite of
its simplicity.

We intend to show that radiation reaction calculations
can be done very simply if appropriate geometrical ob-
jects are used in Minkowski space. A new cutoff pre-
scription in dealing with the electron infinite self-ener-
gy based on light cones is introduced. We follow the ap-
proach of Rohrlich® and Teiltelboim, * where the total
four-momentum P, of the electromagnetic field is the
main object under study. The splitting of P, into its
bound and radiation parts will emerge naturally from
our calculation. The Lorentz—Dirac equation of motion
is obtained by equating the time derivative of P, to the
driving external force.

We now describe the way the calculation is done
leaving the details for the next section: The energy-
momentum tensor constructed from Lienard—Wiechert
retarded potentials is?'®

T, =(e2/4m)[ = K2((RD)? + 12)k, b, + K3(2(RVR &,
- (kz'ﬁ) (kyv, +Ru,)

LB D -4 _1
HR B, RO K =Rk R v, R, = )]

(1.1)

The following notation has been used: the x* are the
Minkowski coordinates, x* = z*(7) is the electron world
line (EWL) parametrized by its proper time 7, 2*
=dz*/dT=2", k=v,(x* - 2"(1)), where 7 is the retarded
proper time of event x*, and k* =k !(x* — 2"(7)) a light
vector. The signature of the Minkowski tensor is — 2.
The velocity of light is chosen to be 1.

Following the standard procedure of field theory, we
define the total four-momentum of the electromagnetic
field by

P* = [ T*¥do,. (1.2)
o

In Teitelboim’s work®* ¢ is a spacelike hyperplane that
cuts the EWL orthogonally. We shall assume o to be an
arbitrary spacelike hyperplane. Such a restriction is
unimportant, since the value of P* is independent of the
detailed shape of o outside some finite neighborhood of
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the EWL, as Gauss’ integral theorem applied to TV ,
=0 shows. As it is well known, P* as defined by Eq.
(1. 2) is divergent; therefore, some cutoff prescription
is necessary (a detailed study of the dependence of P*
on the cutoff is given in Ref. 6). We shall use the fol-
lowing one: Let ¢ cut the EWL at proper time 7, pick
any 7< 7, and draw the future light cone C emerging
from z*(7), as shown in Fig. 1. The portion of o within
C is a three-sphere as seen by an observer with four-
velocity 4" orthogonal to . We denote this sphere by
Sp. Integral (1. 2) is performed on the domain o-Sp only,
and thus it is finite. The three-dimensional picture of
Sp is that of a sphere of light emited continuously from
7 to 7. Within Sp, when 7- T, it is assumed that the
contribution to the total four-momentum is m,v*, where
m, is the bare mass, which, when added to the elec-
tromagnetic mass, gives the observed electron mass
m. We therefore write

P* =ma* + fu_sp T#vdg,,. (1.3)

This last integral splits naturally into two pieces, P
and P

R

which require separate computation. In order

FIG, 1. The world diagram describing various hypersurfaces
used in evaluating the electron four-momentum: ¢ is a space-
like hyperplane cutting the electron world line (EWL) at
proper time T; % is a time like tube surrounding the EWL;

C is the future light cone with vertex at z2%(7),

Copyright © 1975 American Institute of Physics 1380



to exhibit this splitting we surround the EWL by a time-
like tube T (see Fig. 1) which eventually tends to spatial
infinity. In applying Gauss’ integral theorem on T%”

in the region bounded by Z, ¢ and C we get

P4 —mH(T) + P% + P4, (1.4)
where

pg:fc T#vdC, (1.5)
and

Py=- [ T*d3,. (1.6)

The integral P over the light cone C is performed up
to its intersection with 0. The second integral P} is
performed over any timelike tube Z that tends to spatial
infinity, from the infinite past up to its intersection with
C.

P, is identified with the four-momentum bound to the
electron since it depends on the kinematical variables of
the EWL at 7=T only, ¢ in the limit 7— 7. On the other
hand, P% depends on the entire electron history up to 7,
and is calculated out of values of T“" at spatial infinity.
It is identified with the total radiated four-momentum
up to proper time 7.

We apply this method to the electron angular momen-
tum obtaining expressions for the bound and radiated
parts.” Similar calculations are done for the scalar
field.

2. VECTOR FIELD

In calculating the bound four-momentum we need the
light-cone volume element given by®

dC* = k? dk dQUR™, (2.1)

where dQ is the solid angle seen by an observer at rest
with the electron. Equation (1.1} yields the following
relation:

T“, = (e%/8m)K 4k*, (2.2)
and therefore
& wd Qi = & SLpw
=g ) drdwR = f aoicter, (2.3)
K—Ko

where «, denotes the values of  at the intersection of
C and o, which is obtained from Fig. 1 by noting that
{kok* = [2#(T) = 2#(7)|Ju, =0, that is k3! =uk/u(Z - 2). P
is now given by

. (e%/8m)

— u
el BCULS (2. 4)
This expression is easily integrated to give
; 7 1 . u
pu_ 2, (uv)v* - qu .
5=3€ 3 2(7) = z(7) (2.5)
The leading divergent term of P% when 7— T is
P — 2 o2 k(1) — u* /alun(T)]}, (2.6)

where e=7 - 7. This self-energy divergence cannot be
incorporated to m, in Eq. (1.4) unless u* = v*(7), that
is, unless o cuts the EWL orthogonally. ® In order to

renormalize the divergence, we assume u* = v*(7). In
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this case we get®

Py= e: V(1) = § €2# () + 0(¢). (2.7

872
We now consider the radiated four-momentum P%
defined by Eq. (1.6). The exact shape of the tube Z is
not important as can be seen from T*¥ =0. We choose
a tube used by Bhabha, !° defined by the equation «
—=const, its volume element is given by®

dz, = {1 - k(kv))k, - v, I d7 dg. (2.8)
From here and Eq. (1.1) we get
T, dzv=(e2/4m) [(kD)? + 12k, dT dQ, (2.9)

in the limit k — «. A simple computation of angular
integrals leads to

P26 [T v dr, (2.10)

which is the well-known Larmor radiation formula. The
convergence of this integral requires that the accelera-
tion vanishes at 7= - «,

The Lorentz—Dirac equation is obtained by combining
Eqgs. (1.4), (2.7, and (2.10) to get

my, - 23D, + v, )= FeX, (2.11)
u s © I

where F2* ig the external driving force.
The calculation of the bound and radiated angular

momentum is equally simple. The total angular-momen-
tum density is as usual given by

MMV — MY oyt TR (2.12)

The angular momentum M** of the electron field is
given by
MM = [ Mo,

o

(2.13)

where, as for P*, o is the hyperplane that cuts or-
thogonally the EWL at z(7). The angular momentum
(2.13) is split in its bound (M}*) and radiated (M)
parts, in exactly the same way as the four-momentum.
The following two formulas are needed:

MM™vac =z 2 dk dQ (2.14)
and

Mpruv dzv — 2{_ (k{))k”‘l)“] 4Rl 4 [(kb)z + 'UZ]klAZu]}’

(2. 15)

where the limit k — = has been taken in the second equa-

tion. The notation a'“d*) = L(a*b” - a¥b*) has been used.
From Eq. (2.14) we see that
M = 22P% — 24P} (2.16)

which is the result one expects for material particles.
From Eq. (2.15), after angular integrations are per-
formed, we get

T ‘o T N
11;“:—%62.[00 v dr+ 4 e? _[m oPoldr. (2.17)

This result was obtained by Lépez and Villarroel.’

3. SCALAR FIELD

In this section we apply the same technique to the
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massless scalar field of a point source. The field
equation to be solved is

D<I>:4ngf~:’ 8%x - 2(7)) dr. (3.1)

The retarded solution to this equation is known to be &

=gx"!. The energy-momentum tensor is given by
4ﬂTuu=¢,uq>.u—%nuv®.aq).a’ (32)

which gives

2 °
T,,= & [k 2(ko)k, b, + k3= 2k, k, + vk, + VR, ~7,,)

4w
+ KR,k — vk, =0k, +v,0,+ 31,,)], (3.3)
“when & =g«™*. From this expression we obtain
THvdC = (v* - $R¥ )2 di dQ (3.4)
and
T#vdz, = (kv)k* dTdQ, as K- =, (3.5)

which, after angular integrations are performed, gives
Py = (/20" - (8%/3)0" + Ole) (3.6)
and

w L2 [T ose
Pr=w-5g f_cuvud‘r.

(3.7
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The equation of motion that follows from (3. 6) and (3.7),
after mass renormalization, is
mo, — sg¥v, + 1?0, )= F*. (3.8)
The bound angular momentum is given by the same
expression (2. 16) as for the electron. The radiated

angular momentum that results is obtained from (2. 17)
by replacing %¢2 by 1g2.
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Analysis of the dispersion of low frequency uniaxial waves in
heterogeneous periodic elastic media
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The dispersion of harmonic uniaxial waves in heterogeneous periodic elastic media is investigated. The frequency
dependence of the wave phase velocity is obtained in the form of a power series valid for small frequencies and
arbitrary spatial variations of the heterogeneities. The dominant dispersion term is always negative and
proportional to the square of the frequency. Near the static limit of zero frequency the dispersion is of the normal
type—the group velocity, which is also a quadratic decreasing function of the frequency, decreases faster than the

phase velocity.

INTRODUCTION

Recently, the effects of heterogeneities on wave prop-
agation in composite materials have acquired technical
interest. In bilaminate materials the dispersion effects
have been examined by Sun, Achenbach and Herrmann, !
Lee and Yang, 2 Balanis® and Peck and Gurtman, ? ex-
perimental investigations have been carried out by
Lundergan and Drumheller, * models have been proposed
by Hegemier and Nayfeh® and Barker.’

In the following sections a general method, similar
to one described by Friedrichs, ® is applied to spatially
heterogeneous periodic elastic media to determine the
dispersion effects on uniaxial propagation. The analysis
is also applicable to other media similar to elastic me-
dia such as dielectrics and transmission lines.

STATEMENT OF PROBLEM

Let the time harmonic dependence be exp(~ iwf) where
w is the applied frequency (a real number). Let x,
u(x, w), o(x, w) represent the Lagrangian particle posi-
tion, harmonic particle velocity and harmonic particle
compressive stress. Finally, let the reference density
p(x), inverse constraint modulus m(x), and reference
sound speed c(x), c{x)=1/Yp(X)m{x), be positive,
piecewise-continuous periodic functions of x with period
L. Tt is well known that the longitudinal wave motion is
governed by the equations

2 tulx, w) _. 10 m| fulx, w) (1)

iw
x ’

o, w) p(x) 0 ofx, w)

whose general solution has the Floquet type form

ulx, w) | _ | flx, w) explilwx/v,(w) [}
a(x, w) glx, w)
+ hix, w) exp{~ ilwx/v,(w) T} @
s(x, w)

where f, g, h, s are periodic functions of x with period
L. The effects of the density and constraint modulus
heterogeneities on the frequency dependence of the
phase velocity v,(w) are the main interest of this paper.

1383 Journal of Mathematical Physics, Vol. 16, No. 7, July 1975

ANALYSIS

Equation (1) is linear. Accordingly, the following
Friedrich’s type representation is possible:

u(x, w) ~ Blx, o) (0, w) (3)

a(0, w)

alx, w) ,

where B(x, w) is a square matrix. The differential equa-
tion satisfied by this matrix can be obtained by substi-
tuting (3) in (1)

0 mx)

2B .
= w)=iw p(x) 0 B(x, w) (4)
and
B0, w) =|* 9. (5)
01

The velocity and stress at the left boundary of the
first cell of the periodic medium are related to the velo-
city and stress at the right cell boundary by Eq. (3)
evaluated at x=L. Since all cells are the same it fol-
lows that the fields at any lattice point are connected
to the boundary fields at x =0 by the relation

ulnL, w)
a(nL, w)

u(0, w)

:B"(L, (L)) 0_(0 0.))

(6)

where n=0,1,2,3,+--. The wave phase velocity, which
is related to the eigenvalues of the matrix B(L, w), en-
ters the analysis when the boundary field vector is de-
composed to the eigenvectors of B(L, w). If exp|+i{w/
v,(w)]L} are the matrix eigenvalues and [}, ,,] the cor-
responding eigenvectors, then, at the frequencies at
which Z (w) #Z_(w), we find

(0, w) 1 1
o0, @) |~ 20| TP 2 ()

which, when substituted in (6), gives the lattice waves
in a form comparable to (2)
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u(nL, w) 1
) = a{w) Z.(0) exp{inLw/v,(w) ]}

onl,
1
0@ 4 () exp{~ inL[w/v,(w)]} )
where
R S e o
() = Za(@)ul0, ©) — (0, ©)

Z (w) = Z_(w)

The theorem below and the discussion which follows
it summarize the low frequencies dispersion efiects
caused by heterogeneities. The proof of the theorem
follows from Eqgs. (4) and (5) and is given in the Appen-
dix. The elements of B{L, w) are indicated by by, {(w),
Dip(w), by (w) and byy(w).

THEOREM

The wave phase velocity has the following properties:

(a) It depends on the trace of B(L, w) according to the
dispersion relation

wL Dy (w) + bg(w)
vplw) - 2 ’

(8)

where b3 (w) and by(w) are real even functions of w.

(b) It is real for all w in the region — ¢/V3L <w <%/
V3L.

(c) It has a low frequency power series expansion
which involves only even powers of the frequency

z'p(w):E(l— Z'ng—'1r4w4_ o) (9)

where

B lf[, 1/2 1[1, 1/27-1
Ci':(f U p(x)dx) <f . m(x)dx) ] (10)
! E>2 2 L\
‘Z*E(f ‘4‘!(5)
—fL z;s(.\')fxp(v)Jym(z)fz plw) dw dz dv dx
1} 0 0 0

- fL p(x) fx m(v)[yp(z)'/z m{w) dw dz dv dx] (11)
o o 0 0

and
oL\ % L
gt + e’ +o0e ‘:OKJJ?—> :' as .%—\—*0.
c

(d) The coefficient v, is always nonnegative; positive
if p(x)r(x) depends on position and zero if plx)e(x) is
constant,

THEOREM DISCUSSION

The speed ¢, which enters in the above theorem, has
physical meaning. Let €(x, ») be the strain, €(xr, w)
= (3z,/2x)(x, w) where £(v, w) is the harmonic particle
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displacement. If the medium is in static equilibrium,
which is the case when w =0, the stress is independent
of position. Let {.(x), 0, be the equilibrium particle
displacement and equilibrium stress. By integrating
Hooke's Law

olx, w)=— €{x, wy/mlx)

over a unit cell, we find

1 L -1
Ueq:—(z--/(; m(x)dx) €4q (12)

where €, is the macroscopic strain for the cell, i.e.,

_ Lo} = £,4(0)
eq L .
When the average density , p=(1/L) [fp(x) dx, is in-
troduced in Eq. (12), we obtain

— _ 7R
Ogq=—PC €y

which implies that ¢ may be interpreted as the macro-
scopic static sound speed of each unit cell.

Equation (8) represents the dispersion relation for
the phase velocity of any periodic medium. Many analy-
ses for particular periodic media have shown that their
dispersion relations exhibit the phenomenon of pass
and stop bands. Band structure is also evident in (8).
The frequency ranges for which

2

are the pass bands where the phase velocity is real. The
stop bands, where the phase velocity is complex, occur
when

Dyg(w) + byy(w)
2

> 1.

The theorem asserts that the low frequency range

e &

V3 L

is always within a pass band. It is interesting to note
that as the thickness of the cell goes to zero ¢/L -
and the pass band increases in size indefinitely. How-
ever, this result is not surprising since as L ~ 0 the
cell tends to look more and more like a homogenous
cell which, as is well known, has no stop bands.

In contrast to the lossy dispersion encountered in
propagation in viscoelastic materials, the dispersion in
heterogeneous elastic media is effected without loss of
energy. The following argument illuminates the reason
the phase velocity power series expansion involves only
even powers of the frequency. The transient velocity
lattice waves that propagate in the +x direction are

UnL,t) :E% /ma(w) explinL{w/v,(w) |} exp(- iwt) dw.

In order that these waves be real functions

vi{w) =1, (- w) (13)

where * means complex conjugate. An assumed phase
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velocity expansion which contains both even and odd
power terms,

0y(0) =C(1 = 21w = 008 = vgw’ — < +),

must, in accord with (13), have purely imaginary odd
power coefficients, in contrast to the even power co-
efficients which should be real. However, for lossless
propagation the power series expansion of the phase
an/vp(w) must be real. Thus, the purely imaginary
coefficients v, v3, v5, *»*, which are indicative of dissi-
pation, are identically equal to zero.

The theorem asserts that in the low frequency re-
gime the phase velocity is always quadratic and attains
its maximum value ¢ at the static limit of zero fre-
quency. The low frequency group velocity v,(w),

4
ve(w) =[(3/9w)w/v,(w) ], v (w) :E[l - 30,02+ 0 (—%—L> ]
has similar properties. Thus, in the low frequency re-
gime, spatial heterogeneities in the medium impedance
affect the wave motion by letting the lower frequencies
travel faster. The motion of the higher frequencies,
which see the detail of the heterogeneous material struc-
ture, is impeded by more reflections. Accordingly, in
low frequency propagation of transient pulses the higher
frequency portion of the pulse should be behind the main
low frequency part which travels with the higher speeds.
Solutions of pulse propagation demonstrate this effect
of heterogeneities in elastic media.® In contrast to other
types of dispersion, elastic heterogeneities generate
the normal type of dispersion in the low frequency re-
gime—the wave phase velocity is always larger than the
group velocity

v(w) = v (w) =T [szwz + O(%éf].
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APPENDIX: THEOREM PROOF

(a) The eigenvalues of the matrix B(L, w) depend on
its determinant and its trace. The eigenvalue product
is equal to the determinant; the sum is equal to the
trace. It is easily deduced from (4) that the determi-
nant is independent of position,

%det[B(x, w)]=0,

From (5) follows that
det [B(L, w)]=1

and thus each eigenvalue is the inverse of the other.
The trace of B(L, w) is the sum at x =L of the matrix
elements by, (x, w) and b,,(x, w). Their properties can be
found from matrix Eqs. (4) and (5) whose explicit form
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is
2by, .
“x (x, w) =iwm(x)by (x, w), (A1)
by .
rr (x, w) =iwp(x) by (x, W), (A2)
b11(0, w) =1, (A3)
b21(0, w) =0 (A4)
and
a—i byalx, W) = iwm(x)b,yy(x, w), (A5)
by, .
= (x, w) =iwp(x)by,{x, w), (A6)
byn(0, w) =1, A7)
b1,(0, w) =0, (A8)

The uniqueness of the solution of the above equations
indicates that

by (x, W) =bf(x, w) = by (x, - w),

baa(x, w) = b (x, @) =byy(x, - w),

by3(x, w) == bfy(x, @) == by,{x, - w),

boy (¥, 0) == b (x, W) == by (x, ~ w).
Therefore, the elements &;; and b,, are real even func-
tions of w. Their sum at x =L, which is connected to
the eigenvalues by the relation

explilwL/v ()]} + exp{= ilwL /v, (w) [} = byy (w) + by(w),
results in (8).

(b) The low frequency behavior of the elements of
B(L, w) determines the low frequency behavior of the
phase velocity. When w is small an iterative procedure
applied to Eqs. (A1)—~(A8) shows that at x =L the ele-
ments of B(L, w) possess the following power series
expansions:

by (w) =1+ (fw)?A, + ((w)tA +- - -,
bio(w) =iwB; + (iw)*By + ({w)’Bg + - - -,
by () =iwCy + (1w)3Cy + (w)3Cg + - - -,

boa(w) =1+ (iw)2D, + ({w)Dy + - - -
where

Ay = JUL “7@1)%3’1 p(vz) dvy dv,

A= [ myy) f03’1 plyy) == foy”'z m(v,4)

X[ () dv, v,y - - dvydy,

= L
Bl = {0 m 0"1) dyl
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By = [Fm(y) [ plvy) [2mvy)

. ﬂ)w'zp(yz-l) foyz-l m(y,) dy, dy,y - - - dyydy, dy,
C, = fOL p(y1) dv,
C,= foL p(¥1) foyl m(y,) foyz pWy) - -« foyl-z miy)

x [T o) dy dy, .y dygdyydy,

- L
D,= [ ply1) foyl m(yy) dy, dyy

D= [Fo() [ mly) - [ 200,

x fOYk-l m@k) dykdyk-l ° ‘dyz dyl

and 1=1,3,5,°° and k=2,4,6, ---. When the cell
width is substituted as the upper limit of all integrations
in the equations above we find

~ [L\*
A-(2),
_ L \*
Dk\<<?) B

Now, the absolute value of the right-hand side of (8) is

given by
2 4
Mi:‘l_l(ﬂ_fi) +_w_(A4+D4)
2 | 2\ ¢ 2

(A9)

(Al10)

_i*’zf(za+56)+.”{ (a11)

and is bounded from above by

g

3 +z[wtA, +D,) + w®(Ag+Dg) +- - - |

which, in turn,
: l(sv_f:)z +<w_L>‘ 1
T2\¢ t ) 1-(wL/0)?

when w is in the low frequency range [wL/¢1<1/V3,

However, it is easy to show that in this frequency range
the last upper bound is less than 1. Thus,

is similarly bounded by

by{w) + bzz(w) % <1
2

and the phase velocity is real when |wL/21<1/V3,
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(c) Let &(w) be defined as

The dependence of this parameter to small values of
the frequency can be obtained from (A11). When this
equation is squared we find

byy + by \2 1,(¢V,+ | =
(——2 22) :1—€2+€4[Z +(Z) (A4+D4)} + Iy

where the small parameter € is given by

€e=wlL/C.

(A12)

(A13)

The remainder %;, which is an even function of w, is of
order higher than ¢*
hl - 0(66).

From (A12) and (A13) follows the low frequency expan-
sion for &

£= 5{1 —%62[% +(L3)4(A4 +134)] +o(<4)}.

Now, the phase velocity is related to £ by the following
equation obtained from (8) and (A12)

v, =7cle/sin(8)]. (A15)

The phase velocity expansion, whose dominant terms
are noted in (9)—(11), results from the power series
expansion of the right-hand side of (A15) for small val-
ues of €, The useful inverse sine series is given by

(A14)

sint () =+t B+ 0+

(d) For the purpose of showing that ¢, is nonnegative
we introduce the transformation x’=x'(x),

x'= [Sm)dy,

which is continuous and one-to-one. Let d and g stand
for

L L\?
(l:fo mv)dv, g=2 =) va.

The ratio of the density to the constraint modulus is
noted by n{x’) and is equal to the square of the medium
impedance

_plx(x))
Tamx(x)

n(x?)

Then, the quantity ¢, which has the same sign as vy,
is related to n(x’) as follows:

:—4%(12(‘[0[1 ’)dx ff n(x’)
j [ n(w’) dw'dz'dy’ dx’ —f n(v')f [ n(z"

Xf dw’dz’dy'dz’. (A16)
0

The function n(x’) is piecewise continuous and admits
the Fourier series expansion
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ﬂ(x')=77+2<a, cos-zl‘t-)-x'+b, sin—zlpx’> (A1)

ot d d

where the Fourier coefficients are

T]—-l ’ (x’)dx’

and

a 2
a, :C—Zi_[; (x") cos (-L—;-TPX'> dx’,

d
bP:(%J(; n(x’) sin(%%px')dx’.

When the expansion (A17) is substituted for » in Eq.
(A16), and the rather lengthy but straightforward alge-
bra is carried out, we find that g is connected to the
Fourier coefficients by the following simple relation
dt 2 a2+b?
q =g i B

Al8
p=l P ( )
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Clearly, g and, therefore, v, are always positive if the
impedance varies with position, and zero if the impe-
dance is constant,
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The influence of linear damping on nonlinearly coupled

positive and negative energy waves
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The linearly damped response to the nonlinear resonant mixing of two monochromatic coherent waves, involving
modes of different energy sign, is shown to be always explosively unstable. Degeneration theory, modified to
encompass explosively unstable solutions, is then applied to distinguish regions of negligible and strong damping, where
the equations can be solved analytically. Effective damping, characterized by a damping rate v, much higher

than the (normalized) initial excitation U, of the source waves, increases the explosion time by a factor of v/ Uj.

1. INTRODUCTION

A wave is said to be explosively unstable if its ampli-
tude A diverges in a finite time {/,,. For three mono-
chromatic, coherent waves a behavior of this type takes
place as a result of their nonlinear resonant interaction
if the wave with the highest frequency has energy of
opposite sign to the waves with lower frequencies, la
situation which can arise in an anisotropic plasma.?*

At perfect frequency and wavenumber matching, the
corresponding equations, »'* including the effect of linear
damping on the wave amplitudes but neglecting its pos-
sible contribution® to the wave-phases, are to lowest
nonlinear order

dA;

CHAv A =MAA, (1)

(7,7, 8)=(1,2,3) cycl.

The initial conditions A;;=A;(0) satisfy 4,;,#0 for at
least two waves. All quantities in Eqs. (1) are real, the
v, are nonnegative, and the coupling coefficients M,
characteristic of the plasma and the respective wave-
mode, are positive.

The system of Egs. (1) is integrable by quadratures
if and only if vy =v,=v3=v, a pfoperty which generally
follows from the existence of two independent invariants
for this case, A} - A}=C,, and A}~ A2=Cy;. The actual
integration proceeds as in the conservative case, after
having applied the transformations introduced by
Armstrong ef al.,?

A=A, t=vi(l-e™h), (2)
which reduce (1) to

i

Wl =MAA,. (3)

When the v; are not all the same, which is the physi-
cally more realistic case, the solutions of (1) have to
be studied by approximate methods. Wilhelmsson® pro-
ceeds along lines suggested by the transformations (2),
which are generalized in keeping with the requirement
that the development of each wave be initially controlled
by its respective damping rate v;, but depends asymp-
totically on a symmetrical form of the v;. The approxi-
mate solutions thus constructed are equal to the exact
solutions for vy =v,=v,, but for appreciably large dif-
ferences in the damping rates their validity is question-

1388 Journal of Mathematical Physics, Vol. 16, No. 7, July 1975

able. For example, the solutions predict stability when-
ever 3/% v, is larger than the conservative explosion
time. This result is in contradiction with a fact pointed
out by Jungwirth’ and proved quite generally in Sec. III
below, namely that when only one wave is damped the
interaction remains unstable for any finite value of v.

Jungwirth’s study” is more analytic in nature, attempt-
ing to analyze the effect of damping when the initial con-
ditions are equal for all three waves. The discussion
concentrates principally on the physically more signifi-
cant cases of highly asymmetric damping conditions,
with only one or two of the waves subject to damping.

In particular, in the case of only one damped wave, it
is shown that damping can be effective only during a
limited interval of time, a fact which figures prominent-
ly in the present analysis.

In further studies of a more general nature,
Wilhelmsson et al.* find the necessary conditions for
instability, and Wang® presents sufficient conditions
for stability.

In the present study we treat the inherently unstable
situation in which only one wave is subject to damping.
We propose to study this case by extending degeneration
theory, ? applied previously10 to strongly damped, stable,
positive energy waves, to unstable situations. We will
then be able to define regions of strong and weak damp-
ing, respectively, where analytical approximations are
available.

In Sec.II we present, for further reference, conser-
vative solutions valid for arbitrary initial conditions.

In Sec. III we discuss system (1) in the phase space
of a generating function for the wave amplitudes, and
outline, from the point of view of degeneration theory,
the difference between exponential and explosive
instabilities.

In Sec. IV we develop the degeneration technique in
the vicinity of the explosion time.

1l. CONSERVATIVE SOLUTIONS

In this section we present the solutions of system (1),
in the absence of damping, for arbitrary initial condi-
tions, and discuss the explosion time as a function of
the initial conditions.
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The substitution*
wy=(M;M) %4, (5, k) =(1,2,3) cycl (4)

transforms (1) into the more convenient form
ui + v =ugu, (5)

where the prime denotes differentiation with respect to
time ¢£.

Let us now consider the case of all v; =0. The sym-
metry of Egs. (5) allows us to assume, without loss of
generality, that the initial conditions satisfy the
inequalities

Ugg S Upg S Uy . (8)

The solutions for other initial conditions can be obtained
by the appropriate permutation of indices in the solu-
tions corresponding to case (6). Let us first consider
the case

(1) ug9 <uzg <yq

Denote
A =ufy—uly, b =ufy—uly, (M
B =(a® - b?)/a?. (8)
The solution u, is the Jacobian elliptic function!
us(t) = acs{~ at +tn(a/uy,, #), kl, (9

with % as the modulus. The solutions », , follow from
the invariants

W —ul=ab ui-ui="b. (10)
The functions u; diverge at
to=(1/a)tn(a/uy,, k), (11)

where tn € (0, K(k)), and K(k) is the complete elliptic
integral of the first kind.

Of particular interest is the special case u;,=0,
which yields

Uy = uytn(uy of, k) (12)
with
T
) -Z_u; s U1~ Ugp (13a)
tex=——K(k) =
“o 'Llnéll—l—o, u10>>u20. (13b)
U1y Ugp

It is now interesting to follow the degradation of the
solutions from Jacobian elliptic functions through tran-
scendental elementary-to-elementary functions, as we
allow coalescense of the initial conditions.

(11) ugo=ugy <uyy

Uy =— o (14)
sinh[- at + sinh™{a/usg) |
1
s Mo~ Ug (15a)
1 a 20
tex==sinh™!—= 1 2
a Uzg 10
— In—==,  #y>Usg. 15b
. 10 > Ugq (15b)

(iil) uge <ugo=1y,
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a

"= Gl at + an @ g (16)
(iv) ugg=ugg =141,
___ "
U=——7— w71 a7

An indication of how the initial conditions affect the
explosion time follows, by way of comparison, from
(13) and (15). First, as a function of the strongest exci-
tation u,, f,, drasitically changes its functional form
as u,, increases, resulting in a considerable reduction
of {,.. Second, as a function of the weakest excitation,
Uy, fox changes at most by a factor of 7/2.

In the subsequent analysis, therefore, we shall al-
ways make the simplifying assumption u;,= 0.

1. EFFECT OF DAMPING: BASIC CONSIDERATIONS

Now, let the wave u, be subject to damping for initial
conditions u3,=10, u;guy,#0. Physically, this corre-
sponds to the generation of a damped response u; by
nonlinear mixing of the waves u; and u,.

Representing this case are Egs. (5) in the form

U’ =uu,, (18a)

u’ = Un,, (18b)

Uy +vus=ul, (18¢)
with the initial conditions u3,=0,

Uy=max(uy g, #pg) and uq= min(uy g, tg). (19)

Thus U, > u,, and the single invariant of system (18) is
U= =% -u3=C" (20)

Let us assume C # 0 and make use of (20) to convert (18)
into a second order system for a single generating func-
tion. The function ¥ defined by

U=C coshy, (21a)

#=C sinhy (21b)

satisfies (20) identically. Further, with
Uy = 1,[1' (22)

Egs. (18a,b) are satisfied identically, while Eq. (18¢)
becomes

" + vy’ - $C%sinh2y =0,
(23)
$o=cosh™ Yy , =0,

Equation (23) has just one singular point in phase space
(¢, "), namely on unstable saddle point at (0, 0). In the
presence of such a singular point, the linear damping
term cannot remove the instability of the solution, ®
which thus remains explosive for any finite rate of
damping, This property of the solution excludes the
straightforward application of degeneration theory to
(23), in contrast to the case of stable positive energy
waves.'® As a matter of fact, degeneration in the ex-
plosively unstable case is not even similar to the de-
generation of exponentially unstable systems. It is quite
instructive to follow the procedure in the latter case.
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Let us, therefore, consider the linear analogy of
(23), that is,

y’l+ Vyl— czy — 0,
y(0)=y,>0, y’(0)=0.
The degenerate equation associated with (24) is

vz' - C¥% =0,
Z(O) =Yg (25)

(24)

Its solution, z=y,exp(C%/v), satisfies the relation

VZ

—w=v/C? (26)

for all {0, *). Therefore, if v2>>C? Eq. (24) is de-
generescent for all >0, and y =z. Indeed, as is easily
verified, when 4C2?/v%3<< 1, the solution of (24) becomes

y = vo[1 = O(C?/v¥) ] exp(C? /v). 27
Now, let us turn to the degenerate equation
v¢' - 5C%sinh2¢ = 0, (28)
o=y
associated with (23). Its solution
¢(t) =tanh™' Q(?) (29)
Q) = U(J —L exp(C%/v) & (uy/Uy, 1) (30)

diverges as ¢ —1, that is, at

—z ln— UO

t(‘D)
€ C uy’

(31)

The u-representation corresponding to ¢ is, from (21)
and (22),

1

(012 _ 2
Uer_c - (32a)
ut®) —CZ—QZ—E (32b)
1-@*’
c? Q
(o) Y7
V=51 (32¢)

In the special case C=0, for which the y-representation
does not exist, we obtain, upon taking the limit uy— U,,

t)=v/2U0¢ (33)
n'® 2 U )2 - Uoz/(l - ZUOZf/V) (34&)
2
us(‘b):U(O)/y' (34b)
We now define the degree of degeneracy D(f),
u¢ v? 1- Q*
35
D)= Ezm (35)
First, it is easy to show that if
v2
<1 36
AL 9

then D(¢) <1 for all t {0, #{’) and u,/Uy< (0,1). Thus,
condition (36) is sufficient to assure that Eq. (23) be
never degenerescent. In this (weakly damped) regime,
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the solution ¢ of Eq. (23) is determined by the first and
third terms in (23) and the effect of damping can be neg-
lected altogether.

Let therefore v > U;. Then there can exist an interval
of time in which D{(#) > 1, but, since ¢ approaches a sin-
gularity as ¢ ~£{’, ¢” eventually dominates over ¢’
and degeneration breaks down. In the case of strong
damping, therefore, Eq. (23) can never be degeneres-
cent on the entire interval (0,tY)), where (& is the ex-
plosion time of the solution ¥ of Eq. (23).

V. DEGENERATION NEAR SINGULARITY

We will now proceed to show that, as damping be-
comes effective (v>> Uy), the solution ¢ is well-approxi-
mated by ¢ on the major part of {0,t&’). The procedure
is to demonstrate that both £{2’ and té;’() fall within the
limits of an interval whose extent is small in compari-
son with £2’°, and that Eq. (23) is degenerescent for al-
most all times up to #{2°.

To this effect let us prove the following two state-
ments. Let
v/U;>1 (37
Then:
(a) The explosion time #{ of the solution ¢ of Eq.

(23), and the explosion time 7{2’, given by (31), lie with-
in the interval

{ty, 1, +2/Uy. (38)

Here, U, is given by (19) and #, is determined by the
function

n

£A) ztA:;mﬂ"—‘ﬁ

ugM+A (39)

(with n=v%/C?), the inverse of A=D(f), where D({) is
the degree of degeneracy (35).

(b) The times #£2’, & and #; satisfy the inequalities

|t =t /12> < aUy /v, (40a)
(t(‘D) /t(®)<4U2/V (40b)

We start with (a). By definition, ¢ approximates
very well at £, when A>>1, whereas around /; degener-
acy breaks down, and the solutions ¢ and ¢ diverges.
For ¢ >, the solution ¢ approaches its region of sin-
gularity, characterized by the dominance of §” over
vy’. In this interval the damping term can therefore be
neglected and the solution is well-approximated by the
function (9) with the appropriate initial conditions given
by the amplitudes (32) evaluated at f =4;. Let us denote
by ¥‘® the solution thus obtained. The quality of the ap-
proximation ¢‘® is essentially determined by the devia-
tion of the initial conditions from the actual values of
¥(#,) and '(¢;). In the region (0,t), where ¢” represents
a small correction term in Eq. (23), we easily find ¢ ~ i
and ¢'> ', since ¢ is convex, implying 4"+ 0, Thus #(#)
and ¢/(#,) lie inside the intervals (¢(¢,), ¢(#)) and
(¢'(24), ¢'(t1)), respectively, where A is large enough to
guarantee a high degree of degeneracy at {,. For the
sake of definiteness, let us take A=v,/U,.

V. Fuchs 1390



We will now assess the effect which this margin of
error in initial conditions will have on the estimated ex-
plosion time t& = ¢ + £, Shifting the initial conditions
from /, to ¢, along the solutions (32) gives

w0y = U (t,) =C[(n+A) /24T /3, (41a)
us(0) =u®(t,) = Cl(n- A) /24T /* (41b)
(S)(O) u 0)([A n (nz_AZ)l /2 (410)

Obviously u{g’ > usy’, but also uy’ > uiy’ when A=
Therefore, the solution ul*)(f) 1s given by the solutlon
(9) of case (i) with

a2 =[C¥n+A)/44%n|(2An- n+ A), (42a)
b2 = [CHn— A)/4A%N](2A7 - n— A) (42b)
k% =[4A%n/(n+ A)(2An=n+A)]. (43)
Since (37) implies > A4, it follows that
k(s):(ZA/T])l/z«l (44)

and, consequently, K(k*’)-1/2, cs—cot, tn—~tan, so
that the Jacobian elliptic solution becomes

u{® =a' cot <— a®t +tan™ %g—;—) . (45)
The corresponding explosion time ¢£’ is

té:’:z(ls—)tan'l;(gg—;zm tan™ V24, (46)
so that

) < 24/v (47)

Further, making use again of n>>A, we obtain, from
(39),

=& = (48)

The total estimated explosion time, taking f; as the time
separating the degenerate and singular regions, is

ted ~l H 1. (49)

Thus, since A=v/U,
b <t@ <1, +2/U,. (50)

Further, from (48),

1 =H+2/v <t +2/U, (51)
which completes the proof of statement (a).
Let us now turn to (b). Obviously,
[t - 152 <2/U,. (52)
Thus
p= lﬁt%ﬁ -g—ggln Yy (53)

Since C®=U% -~ 1%, we may write
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v 1 1
P30 1o Py (59)

with x =u,/U,< (0, 1), so that

p>v/4U,. (55)
Further,
_ ) v UU
TS Z—Cz1 uy’ (56)
so that
2 2
v 1 1 v (57)

ITIEI-R M IR

which completes the proof of (b).

V. CONCLUSION

When only one of three waves participating in the
resonant interaction between positive and negative en-
ergy modes is damped, the interaction remains explo-
sively unstable for any finite damping rate, v. The
system of nonlinear differential equations (18), de-
scribing this nonconservative interaction, is charac-
terized by the existence of only one invariant (20) and
therefore cannot be integrated by quadratures. How-
ever, the system can be transformed into a second
order differential equation (23) for a generating func-
tion, defined by (21), allowing the application of degen-
eration theory, generalized to encompass explosively
unstable situations. This procedure enables us to ascer-
tain that strong damping substantially increases the ex-
plosion time.

In more definite terms, when the rate of damping
is small,

v/ (ul + U3 < 1, (58)

Eq. (23) is never degenerescent, the effect of damping
can be neglected, and the explosion time is approxi-
mated by the conservative expression (13).

On the other hand, when damping is effective,
v/U, > 1, (59)

it follows from (40a) and (40b) that Eq. (23) is degen-

erescent on the interval (0, 7,), where
ty=tP(1-0(U,/M)], (60)
while
tO =1+ 0(Uy/v) ], (61)

Therefore, the solution ¢ of Eq. (23) can be approxi-
mated by the solution (29) of the degenerate equation
(28) with an acceptable margin of error.

By way of comparison, we infer from (13a,b) and (33),
(31), respectively, that effective damping increases the
explosion time by a factor of v/U,.

A few words concerning the initial conditions should
be added. The degenerate approximations (32a, b) for
U and u satisfy the proper initial conditions U, and u,,
respectively, whereas #{®’ does not. As shown in Ref.
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10, the connection between the initial condition #,(0) =0
and the degenerate expression (32¢) is realized by the
multiplication factor 1 — exp(~ v£). On the time scale of
the explosion time #{?’this transition, characterized by
the relaxation time 1/v is very fast, as can be seen
from (56), and thus has a negligible effect on the evolu-
tion of the solution.

As a final observation, we wish to point out that the
procedure of degeneration presented herein can be ap-
plied, with appropriate modifications, to any dissipative
second order system with a negative nonlinear control
term leading to a saddle point singularity in phase space
(Y, Y’), provided that we specify Y #0 as an initial
condition.
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The Hamiltonian H = (- 1/2)d2/dx2 +x2/2 + \/x2
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The Schrédinger problem for the title Hamiltonian is considered as a perturbed one-dimensional harmonic
oscillator. Exact bound state solutions can be derived from a classical differential equation in the theory of
Laguerre polynomials. These solutions are valid and analytically dependent on A only in a limited range of the
perturbation strength. Within this region the oscillator Hamiltonian restricted to odd and even parity subspaces is
unitary equivalent to H restricted over the respective perturbed subspaces. It is shown that due to the singular
nature of the perturbation the allowed A range is narrowed if side conditions are imposed to make the

wavefunctions “physically interpretable.”

1. EXACT SOLUTION OF THE PERTURBED
PROBLEM IN L2( -oo, + o)

The differential operator H of the eigenvalue problem
Hp(x)=Ed(x), 1)

where {(x) belongs to L%(~ «, + ), can conveniently
be written in the form

H=H,+\V,

Hy= = 3/ +2°/2, @)

V=1/x2,

The unperturbed Hamiltonian H, is the harmonic
oscillator operator while V is a singular perturbation
the strength of which is measured by the parameter a.
For convenience I have set Z=1 and considered a par-
ticle of unit mass, The unperturbed eigenvalue problem,
obtained from (1) in the limit x =0, has the well-known
solutions

El=n+ 5, 00) = @n!Va)/2%e /2] (x), 3)

where n is a nonnegative integer and H, (x) are the
Hermite polynomials, The solutions of (1) can be ob-
tained directly if one identifies the problem with the
following differential equation occurring in the theory
of orthoganal polynomials (Ref. 1):

1 d2<p(oz)(x)
T2 dx
2 1-— 2
- (2n+a+1-%+——g$£—) 9 () =0, )

which, when o > -1, has solutions in L?(0, + =) given by
CP,,(""(x):x”"‘/ze"‘Z/zL,,‘”"(xz), (5)

where the L,f"" are the standard generalized Laguerre
polynomials. Identifying the differential operator in

(4) with H, one finds an expression for the perturbation
strength

r=3a -3, ®)

Since x depends only on o®, the eigenvalues and eigen-
functions will occur in pairs associated with + « or
- a, where ¢ is given by

a=+%/ 1+8x . (M

From (4) one sees that the eigenvalues are
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EfY=2nza+1 (8a)
with corresponding eigenfunctions, which are either
odd or even since H is parity invariant, given by
PEO (x)=[n!/T(nz a+1)]*/?
+
(+) (p"(*"‘)(lx!), x>0,
e (8b)
(7)o, <o,
Such a pair of solutions exists only if « belongs to
the half open interval [0, + 1[ since for a=+1 the
eigenfunction qb,f’“’(x) is no longer square integrable.
The following orthogonality relations hold:
SR O () dx =6, Ber ©)

where ¢ and ¢/ may equal + 1. For e=¢’ this follows
from the orthogonality relations of Laguerre polynomi-
als while for e#¢’ (9) holds for parity reasons, as can
be verified directly from (5).

The function a = a(}) has a branch point at A=3, In-
troducing a cut from — 3 to -« in the complex A plane,
an analytic continuation of @ can be realized on a double
Riemann sheet. Taking the limit A =~ 0 along a certain
path on this surface, we have that

limE’f'“) =2n+ %:Egﬂ,
A~0 .
(10)
HUmES® =2n+3=E} ,,,
A0
i,e., the eigenvalues E{**) and E{** are the perturbed
energies corresponding to the unperturbed even and
odd labelled levels respectively. A similar result
holds for the eigenfunctions which are analytical func-
tions of A on the Riemann sheet as can be seen from
(5). It follows that

Lmy= (x) = (=y95, (x),

A0 : (11)
Hmy&® (o) = (-ry ,,(x),

A-0

which is easily checked using the relations between
Hermite and Laguerre polynomials:
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H,, (x)= (=y'2%"n! L2 (x?),
Hyp o ()= (=125 x L /2 (%),

According to (8a) the perturbed energy spectrum of
(1) consists of two sets of equidistant levels E** which
can be obtained from the unperturbed spectrum by uni-
formly shifting the even (odd) parity levels over a dis-
tance A=- a+ 4 (- A), The corresponding nonidentical
twin eigenfunctions §"*(x) and y**(x) exist only for
« in the half open interval [0, +1[, From (6} one can
then immediately derive the allowed range for the
perturbation strength. It follows that A has to be
situated in the half open interval [~ 3,+3[. These
bounds have a very precise mathematical meaning,
in fact, the interval [-§, + 3[ is nothing but the neigh-
borhood of A =0 within which the solutions depend
analytically upon the perturbation strength. The upper
limit A=+ %, obtained for a=+1, gives the maximum
value of A for which the solutions of (1) can be repre-
sented by (5). Indeed the wavefunction §* (x) ceases
to be square integrable at ¢ =+ 1, Therefore, the
form of these wavefunctions must change in a singular
way at A=+ 2, This is also reflected in the fact that
the limit of the ground state is zero (lim, E* =0)
which is clearly inconsistent since the Hamiltonian is
positive definite for x=+3. At the lower limit for the
perturbation strength x» = - ¢ the perturbation is nega-
tive definite. It can be shown from a theorem by
Kato (Ref. 2) (as has been mentioned alsc in Ref, 3)
that this number is the minimum value for which H is
still bounded from below, Physically this is associated
with the possibility for the particle to “fall” to the
center, i.e,, the occurrence of infinite negative ener-
gies (Ref, 4), Here the point A= — 3 showed up in a
mathematical way as a branch point beyond which the
solution of (1) (eigenfunctions and eigenvalues) is no
longer analytically dependent on X. These bounds for
the perturbation strength can also be obtained from
the solutions of (1) near the origin, One finds that
the characteristic exponents (which describe the singu-
larities of the solutions near x=0) are given by
(1+£v1+8x)/2, It is a well-known fact (Ref. 5) that
second order differential operators are no longer
bounded from below if the characteristic exponents
are imaginary, i.e., if » < -3, Furthermore, if
A= + 2, the solution corresponding to the minus sign
is not square integrable at the origin, In fact, 2= —!-%
is the transition point from limit circle to limit point
case in the Weyl classification of second order differ-
ential equations (Ref. 6), From a theorem by
Titchmarsh (Ref, 7) one can show that for xe[- 4, +3l
the differential operator is of the limit circle type at
x=0 (i.e., there exist two linearly independent solu-
tions square integrable at x=0) while for x = +2 one
is in the limit point case (i.e., there is a unique solu-
tion square integrable at x=0).

(12)

In Refs, 3 and 8 the solutions ¢{"® (x) were considered
to be improper eigenfunctions, in spite of their square
integrability, due to their behavior at the origin (see,
further, Sec, II), In order to get a complete set of
eigenfunctions, one considered as “physically accept-
able solutions” on the real line the functions ¢ (x)
with the prescription
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PN (-x)=x 9 (x), x>0, (13)

The resulting eigenfunctions are y** (x) and a new
function d)n‘*""(x), which is energywise degenerate with
P8+ (x). However, this degeneracy is not removed in
the 1limit X — 0 while the unperturbed even parity levels
do not show up at all. Therefore, one is in fact treating
another eigenvalue problem, corresponding to an oper-
ator defined by the integral kernel

Hix,x')= 2 E&® (0 ()30 (x0)
n=0

+ oI ()P (x))

rather than the eigenvalue problem (1), Observe that
the limit of (14) as x — 0 is only “half an harmonic
oscillator” (odd parity levels only) with twofold degen-
erate levels (Ref. 3).

(14)

i1I. UNITARY EQUIVALENCE

The question of unitary equivalence which was raised
in Ref. 3 can now be treated as follows, Let H{ be
the restriction of H, to the even parity subspace
)[?(~ 0, + ) spanned by the unperturbed eigenstates
{48, (x)}. Similarly we introduce H“*) as the restriction
of H over the subspace generated by {y (x)}. The
unitary mapping U(— ~) which maps the above subspaces
onto each other immediately establishes a unitary
equivalence between H¢® — AI¢® and HS (% is the
unit operator in the space spanned by {y{"* (x)}). Indeed
it is easily checked that

(U= @) HO U (- @) - (HED = AT 2 () =0, (15)

where A is the level shift. In the limit » =0, U(-#)
equal I*1/% and (15) becomes a trivial identity. In the
same way one can prove that H{” is unitary equivalent
to H*® _ AJ™®) (with obvious notations for the opera-
tor), The existance of the properties of the restricted
Hamiltonians demonstrated above is not very sur-
prising. Indeed, the perturbation causes a uniform
shift A (- A) of even (odd) parity levels, The unitary
equivalence of H® and H (H“* and H{”) is nothing
but the operator analog of this special relation between
the unperturbed and perturbed spectrum.

lI1. CONSEQUENCES OF PROBABILISTIC
INTERPRETATIONS OF NONRELATIVISTIC
QUANTUM MECHANICS

The original formulations of nonrelativistic quantum
mechanics (QM) given by Heisenberg, Born, Jordan
(matrix mechanics) and Schrédinger (wave mechanics)
were shown to be mathematically equivalent by the
latter one (Ref, 9). This was accomplished essentially
by proving that the sequential Hilbert space is isomet-
ric to the space of square integrable functions. A
little later Dirac (Ref. 10) managed to formulate QM
in terms of elements of an abstract Hilbert space. In
fact, he showed that any realization of the abstract
properties of Hilbert space in different mathematical
forms gives a possible formulation of QM. Therefore,
as is, for instance stated by von Neumann (Ref, 11),
the only restriction on the wavefunction in the
Schridinger picture is its single-valuedness and its
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square integrability, The integral [2|y(x)|®dx is then
to be interpreted as the probability of finding the parti-
cle in the interval [a, b]. However, some authors (see,
e.g., Refs. 8 and 12) consider a wavefunction physical-
ly interpretable only if ®(x) and ¥(x)dy(x)/dx are con-
tinuous. These conditions assure that the point prob-
ability density 1y(x)12 and the probability density cur-
rent Re[9(x)(V/i)4(x)] vary continuously. In the case

of singular potentials these conditions turn out to be
too severe since one might lose physically observed
states (e.g., the ground state of the hydrogen

atom).

An interesting illustration of the implications of
continuity conditions can now be given for the eigen-
value problem (1). The solutions as derived in Sec, I
correspond to the most general point of view, namely
the solution in L%(- «,+ ) (notice that all spectra are
entirely discrete such that no difficulties occur due to
continuous parts in the spectra). If one restricts one-
self to continuous wavefunctions, it follows from (5)
that o has to be smaller than + 3, which gives an
allowed range of [— §,0[ for the perturbation strength.
This means that continuous wavefunctions exist only
for not too strong negative definite perturbations, If
in addition one requires that ¢(x)dy(x)/dx is continuous,
one finds that o =0 such that x =~ § would give the
only possible perturbed Hamiltonian which would be
isolated from the unperturbed A» =0 problem. As an
alternative one may choose not to consider the
$"* (x) solutions at all (Refs. 3, 8) but then, as
was shown in Sec. I, one is no longer considering the
same eigenvalue problem,

The final justification for the conditions one imposes
on the wavefunctions is, of course, the agreement of
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theory and experiment., The analysis given above
merely shows that in the case of singular interactions
too severe restrictions may have drastic consequences,
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A method for solving a restricted class of nonlinear equations is presented and applied in detail to

solution of the Hartree-Fock (HF) equations.

1. INTRODUCTION

In a previously published note! a method has been
presented which guarantees convergent iterations yield-
ing a solution of the Hartree—Fock (HF) equations. Two
aspects of this procedure, which falls within the frame-
work of the steepest descent methods, are, however,
not particularly satisfactory, First, in order to solve
Eq. (23) of Ref. 1, we had to replace the differentials
by finite differences which leads to difficulties in a
computational application, Second, the method was de-
signed exclusively for finding a solution of the HF equa-
tions.? These two restrictions will be removed in this
paper,

The subsequent section is devoted to the reconstruc-~
tion of the method of convergent iterations in a much
more general manner than in Ref, 1, This is similar to
the results of Ref. 3 where not only was the treatment
of orthogonality constraints included but, moreover, the
numerical solution of the HF equations was carried out
by means of the developed methods, The steepest de-
scent algorithm has furthermore been extended to the
multiconfiguration interaction self-consistent field pro-
cedure, The results have been given in Ref. 4,

In the remaining sections we apply the developed
theory to the HF equations. Section 3 is devoted to
casting the method presented in Ref. 1 into its most
practical form, Here the potential is modified in such a
manner that the degeneracy of the HF Hamiltonian is
removed. In Sec. 4, on the other hand, it is not as-
sumed that the HF one-particle wavefunctions form an
orthonormal set so that the direct work with certain
determinants and their minors is unavoidable, Details
of related investigations may be found in Ref, 5. Various
aspects of the theory connected with the inclusion of
orthonormality conditions are treated in Sec. 5. Com-
pared with procedures used in Ref. 1 the methods de-
veloped in these sections appear to be more efficient,

2. METHOD OF CONVERGENT ITERATIONS

Let py, ..., py be a set of unknown quantities, with
respect to which the set of equations

Fa(Pn "'!pN)=07

is to be solved. For the latter functions we shall assume
that there exists such a sufficiently smooth function
W(py, **°,py) With the property (3,=2/9p,)

Foz(pl.s . ',pN):aaW(pu .o -9PN)’ (2)

where

a=1,...,N e8]
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Wo < W(py, ouusby) (3)

holds for any p,,...,py. Furthermore, we introduce a
continuous parameter s and postulate the following
equations (dp(s)/ds =p):

bo==-3,W. @)
Now

W:§ 3 Wh,=—21 (3 ,WP<0, (5)
so that W(s) is a desc:nding function of s. Making use
of the inequalities (3) and (5), we obtain

lim W(s)zn_maaw(s)=o, ®)

8§ s
so that, in view of {(4),
1si'r2pa(s)=5a, (7

P, being the solution of (1), It is obvious that Eqs. (4)

are not the most general ones. Consider, e.g., such a
situation where W has to be supplemented by equations
of constraint

KB' (p]_, °°';pN)=GB(p1) '-o,pN):G;(pu '--’pN)=O’
B =1,..., M,8=1,...,M, ®)

in order to arrive at (1). (The asterisk refers to the
complex conjugate.) We have divided the constraints
into the real K, and complex G, groups.

In this case, Eq. (4) has to be generalized and we
propose the following form (3 =3/3p#):

5a:-<agw_.62 pad¥K -BZxBagcﬁ -?iﬁagcg), ©)

ﬁ:::_<aaw_§p‘ﬂaaKB—;Aﬂaacﬁ_;xﬂaac‘;)’ (10)

Our aim is to show that these equations lead also to the
conditions (7). In the first step, the wu;, 2, and X, have
to be defined, To do this we shall require that (8) be
fulfilled for each value of s, Thus, e.g.,

0= 6= T, G+ 26,51
== Za:aaGB <3§W = ; p"razKr - ? 7\18’;67 - ? Xya’ZG:)
- %ZBZGB(aaW - ; 0K, ~ ;Avaacvf - ;}:/aac;()
(11)

and the corresponding equations for ég‘ and 123. Con-
sequently, from

; “V{Za;aaKBatzK'r + Za;a:tKﬁaaKr} + },,: A‘/{Zm;aaKBazcr
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+ DaK2,6,| + D [ Do KahGy + Z;a*;xﬂaac;*}
=Za)amKBa§W+§a;KBauw, (12)
EufZ.c0um, + ricau )+ Dn{Taose,
+ ?azcﬂaac,} + ;g{za: 2,G0%Gr + ?a;osaac,*}
=Za‘,aacsagw+ ?agcﬂaaw,

Z m{@aac:azxr + ?atczamxy} + ?,ny{fgaac:a:c,

(13a)

B a>r

+ Ea‘;cg‘aac,}+ 2 X,{Z)a GYotGH +Ea*c;‘aac;‘}
@ Y a

-_-Z&,‘aacg‘a{;WJr }(_:,agcgaaw, (13b)

we first see that

X, =% (14)
Now Eqgs. (12) and (13) can be solved with respect to u
and », whereby the required relation between u’s, \’s,
and p’s is established. In analogy with (5) we calculate

W=218,Wp,+ 205 Wp
=-2 @{aaw -2 ugd K - };xeaacﬁ - ?xgaacg‘}

x{a{;w-g} 15K —?Aﬂagcﬁ -;xg‘a’;(;;} <0. (15)
In deriving (15) we have used Eqs, (12) and (13), Instead
of (5) we thus obtain

Lim W(s)= hm{a w- Eusaazfﬂ sza Gs Z)x 2 c*}

oo

(18)

and Eq. (7). The latter statement requires some ex-
planation. Since Eqs. (9) and (10) are linear differential
equations of the first order, the knowledge of, say,
p10), .. .,py (0) is sufficient for finding p,(s), «+.,py(s).
Further, if p,(0),...,py (0) fulfill (8), then, by virtue of
(11), py(s), ...,px(s) also fulfill (8). Accordingly, the
last equality in (18) may be looked upon as a variational
formulation of (1) where we have utilized the Lagrange
multiplier technique. That is why Eq, (7) holds also in
this case. At this point we return to Eqs. (9) and (10)
in order to show that the modification

ﬁaz _f(s)<a:W - ?)‘ﬂa’;cﬂ - ?Xﬁazcg _%] p‘ea}gzKﬂ) » (17)

15*;:-f(s)<aaw-':&x8aacs-BEXBaac;; _:&uBaNKB> (18)

does not affect the inequatity (15). In (17) and (18) f(s)
represents an arbitrary but positive function of s. How-

ever, if we let

s=g(s") (19)
where g{s’) is given by the solution of

dgls')_ 1 (20)

ds’ =f[g(s' 5] ’

then p’,(s”) defined as
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Pl )=p,lg(s") (21)
is a solution of Egs. (9) and (10). Consequently, if f(s)
has no zeros for s >0, we obtain from (7)

P =limp (s)=1lim p’ (s’). (22)

8w 87 w0

From this we see that the function f{s) plays no role in
solving (1) and we need no longer consider it. One of
possible ways of solving (4) or (9) and (10) consists in
approximating p ,(s) by the first two terms of the Taylor
expansion in s,

Da(8) =Pyt Shy, (23)

where p, is arbitrary and p, is given by the right-hand
side of (4). Inserting (23) into W, we can minimize W
with respect to s so that

Za>5aaaw]pa(3)=pampa =0,

the left-hand side being a rational function of s if Wis
a rational function of p,. In the latter case the solving
of (24) can be converted to finding the zeros s of a
certain polynominal for which mathematical methods
have already been developed. If for s W becomes
minimal, we replace p,+5p, by p2*¥ and repeat the
whole procedure. In the following sections we shall ap-
ply in detail the method described here to the HF equa-
tions in order to construct a theory of convergent
iterations.

(24)

3. CONVERGENT ITERATIONS AND THE HF
THEORY WITH A MODIFIED TWO-BODY
INTERACTION

Consider the quantity

wa[T[(pa>+ {¢a¢B[V!(pa¢B}
@, 0,  as{o,l o0l 0’ (25)

where ¢, a=1,...,N, are one-particle wavefunctions
and {99, V!9,0,} is an antisymmetrized matrix ele-
ment of V., The variation of (25) consists of the varia-
tion of the kinetic part

W(P1y 0uey®y)= Z<

N 1 o [
S0l gtar (1= Gofeg ) lour rove. 6)
and of the potential part

2 (00, Zm <(¢’s| V|9a) 02) = (@] V] @) 25)

‘{‘Pa‘ﬂelV“/’a%}w|¢a>>+cgco 27

From these equations we thus obtain

T,W@M, EM_‘W —e, |0l

(951 0g) (@g] ©5)
(28)
with
_ <<9ai T= qya) E{@a(pﬂ! V[ §0a§0s}

@= 010 B9 0P 0 (29)

A standard calculation yields, however, that
€a-6)@y1 0,)=0 (30)
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which shows clearly that {28) and (29) are not the HF
equations: If o+ y and e, =¢,, then (q),! ¢,)=0 need not
hold., The orthogonality of ¢, ¢, (a#¥) may be enforced

by the replacement
V—=V+5V. (31)

Here it is explicitly assumed that the new potential re-
moves the degeneracy in e. We now make use of (26),
(27), and (4) to obtain

Elow==T|0)-Tl(e, V]ep)] 0.

Wl Tl@y)
{o.loy)

1

— (2| V] 9a) | @a)] (@, [<pﬂ>+<
{0051 VIoaog}

+§<¢ RIS >‘¢ "

For a numerical application of (32), |¢ ) will be ex-
panded in a complete set {x,)

|<”a>=i2(a)t|xt>,
so that (32) becomes

(32)

(33)

—Z;T (01) —ZE V{_,,k;(B) (a), (B)IW
Ln T} () Y Vk L (B (a); (B,
+( Sr@, 7 S e s O B ) (@),

(34)
where

Vit = V= Vi (35)

The next step consists in performing the replacement
(23)

(@);(s)~ (@), = (&), + (36)

where (@), is given by the right-hand side of (34). The
optimal value of s is found by inserting (36) intoc Eq. (25)
and finding the first derivative of W with respect to s.
The result is given by

(&)isy

R,(s)+R,(s)=0, (37)
where R,(s) is the kinetic part contribution
s 2y T (@ (@), + (@) (@);]
e R HEI}
ovxrmy el (@0 (@) (@) (E)])
“?? T, (a)} (@) [5, (@7 (@), (38)

and R,(s} designates the potential part contribution
R,(s)= Z _zuktvu,kt[( )f )*(&)k(B)I + (&)T(B)f(&)k(g)z]
2 (@) (5!)-2(3)*(5 ;

_E ZV} e (@F (B ( O‘)k(B) 0‘)*(01) + (@)x(a),

@), zE,(E)* 55

(39)

The conversion of (37) in a polynomial is straightforward
and we obtain

P(S)EI;[[E{(&);"(&)i]Z(Rl(s)+R2(s))=0, o)

Writing
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4N =1
P(s)= Zl a,st! @1)
i=
we must then evaluate a,, However, let s,,..., s,,_, be
nonnegative and nonequal numbers; then we obtain®
AN =j =1 4N =
E S;g-l)(51;°- 9 San-1 (_ r Zl “j
1
= R siP 42
TG, = sl LG, =5y 1P 60, 42)

where §37(sy, ...,s,) are the generalized Stirling
numbers of the first kind defined by

(na1) ) ¢
59’”1 (Sly"',snd)z-g;l(sn ~",Sn)+sn+l‘§pn)(sly'"’sn),
n®0, (43)
with

S sty veny8)=50 (51, 0aays, )=S0 —1=0, (44)

Since a, are now known, we can apply the standard
numerical methods to find that zero § of P(s) for which
W(s) becomes minimal. Replacing

{a), —~ (45)

we repeat the whole procedure beginning with the right-
hand side of (34) which is now the new (&);. It is obvious
that the new (@), approximate the HF solutions better
than the old ones. An infinite repetition of these itera-
tions yields the HF solutions.

(@), + (@), s E(a)ev),

4, CONVERGENT ITERATIONS AND THE HF
THEORY WITHOUT THE MODIFIED
INTERACTION

The work of the previous section has been based on
(31) which enforced the orthogonality of ¢’s. We shall
now show that (31) need not be taken into account if,
instead of Eq. (25),

W= (U |H [T/ D),

where |¥) is a determinant of unnormalized and non-
orthogonal one-particle wavefunctions multiplied be the
factor 1/ \/N_‘, which in this case has nothing to do with
the normalization. As it will be seen in the following,
we shall be able to convert the problem of solving Eq,
(4) into the problem of repeatedly finding zeros of
another polynomial. The structure of this procedure is,
however, now much more complicated and accordingly
restricted to only small number of particles, For
evaluation of (46) we need the kinetic part

(46)

@\ T|8)= L<<p | T | oty (= 1) (47
and the potential part
@ VD=2 200,05 V] 0,0 M3 (- 1), (48)

a<B y<b

where M(a,’g designates the minor, assigned to the a-row
and B-column, of the first rank of the matrix <<pa[ ©g)y

whereas Mfe’y , assigned to the @, 8 rows and v, 6

columns is a minor of the second rank of the same
matrix, Similarly, one can introduce the minor of the
third rank. The following relations are of importance

for our future work:
M =25 (= 170 Slyal S AIM) oo (o, | @), (49)
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My =2 (= 170 S[yalS[86IM ) 4 540, | @5) (50)
and
Mgg,y5=20 (= 1S [ca] S[eB] S[£7) S[E0IM 5. 0o (0 | 22),
(51)
OM3e =20 (- 175 [ealS efls (21 [80IM R, D 0] 20),
(52)
where
Sl a<f
S{ap]={0 a=32
2—1 a> 3. (53)

We also introduce the minor M'® of the zeroth rank
which is simply the determinant of the matrix (¢, ! @),
so that

MO =2 (- DM (0, | 95), (54)

SM‘ = E (= DM 5 (0, | 0g). (55)
According to Eq. (4) we need the expressions

(@/3¢@q | X¥|T|¥)

=2 T| @My (- 1)+

+BZT36 (0, | T| @) (=1)2*87+85[ya]S[ 881M2 ;Lo d]  (56)
and

&/, V@[ V]E)

=E (@5 | V] @) @M, (= D87 85[ a ]S 78]

+ 20 5 L (= 1), | V] 0go )

xSla|ByIS[E |0l g, il @), 66X
where, for <7,

1 a<B
Sla|prl= -1 p<a<y=Slagls[av], (58)
1 y<a«
so that we may write
:ﬁs lo)=-{R(56)+R(BET/M®
+{R@AT) +RM@8NR (54)/(M©@)? (59)

R(56) denoting the right-hand side of (56), etc. We
employ now Eq. (33) and obtain

(&), = (@), 60)
with
(@)= - {EZ T (M &y (= D5+ DT (B MD,,

x S[BalS[¥8](= 1)48 70+ 205 25 7, 4 (A)X

B v<bjki

X () () M(B,yas[aﬁ]( 1)°‘*6"’*°+EZE( 1)a+ B rovest

By B<e &
<2 ot B O OO, L 71515 o]0
Ju +{§;§ Tay (BR (), ME) (= 177
#2520 20 Vg, BV ) (6),,(6), M52 oo (- 1)8%6*}

X ; (- 1)a+BMu) (8) ]/(M“”)zg

kim

61)
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In analogy with (36) we introduce the new quantity (&),
where (5), is defined by Eq. (61). Thus W becomes a
function of s of the type

wor=( s (3.

where the polynomial in the numerator of (62) is given
by

(62)

D3 T PR, ME (- 1P
F 28 0 Vi (B OO M) oo (= 1P, (63)

whereas the polynomial in the denominator of (62) is
simply the determinant of a matrix with the matrix
elements

(@) (), (64)

which thus also depends on s. This statements holds
also for the minors occurring in (63). It must not be
forgotten that the coefficients a; and b, in (62) may be
calculated in the same way as it was proposed in (42).
The optimal value of s is found by minimizing W(s),
which, in view of Eq. (62), leads to the problem of
finding the zeros of the polynomial

4N -1t k4l
2 E (@b = Ap ;b ,) }s =0,

k=0
We choose now that zero s of (65) at which W(s) has its
global minimum so that the new (), is given by (),
+ 5(&); by means of which the new (a); [see Eq, (61)] are
found and the whole procedure is repeated. The limiting
value of (@), is obviously identical with the correspond-
ing (a)fF.

(65)

The advantages and disadvantages of the method de-
veloped in this section can be briefly summarized as
follows. On the one hand, we have avoided (31) so that
the direct work with V was made possible, Further, the
new values of (a), originating from each iteration step
have been obtained by solving an algebraic equation (65),
which as we have already stated, is a mathematically
well -defined procedure. The main disadvantage, how-
ever, consists in the necessity of repeated calculation
of the minors M@, M® M@ and M® so that this
procedure is restricted only to a small number of
particles,

5. CONVERGENT ITERATIONS AND THE HF
THEORY WITH SCHMIDT ORTHOGONALIZATION
PROCEDURE

Until now we have exclusively used Eq. (4). But it is
obvious that if we put
2| T| 0+ Z (0,0, V] 0,05t (66)
with the constraints
<(pa|(pﬂ>:6ae’ C!,B:l, <y N, (67)
we also arrive at the HF equations where Eqs. (9) and

(10) may now be employed. Identifying (¢ ! ¢,), a< 8,
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with G, and (¢,} 9,), o> B, with G¥; and (¢l ¢,) with
K., we can solve Eqs. (12) and (13) with respect to A’s
and u’s and obtain (A, =u,)

)‘aB=<(pB'T|(pq>+Zy;{(p3‘py |V|§0a¢,}. (68)

This inserted into Eq, (9) yields

;—SI%):—lea>~§[(¢8lVlcoe)lqoa)— (051 V] @)} | 9]

+22(@,| T |9+ 2i{0,0,| V]e.0,D] 0,), (69)
or using Eq. (33).

(&)4= —; Tij(a)j -;,Zk;; V{j,k;(ﬁ);(a)k(ﬁ)l

+E(Zk @ Ty (@ 2 5 oy 01 (w)f(a)m(v),,> ).

(70)

Designating the right-hand side of this equation as (&);,
we can again define the new quantity (&), according to the
prescription (36). However, (&), do not fulfill the con-
straints (67) and we shall enforce them by applying the
Schmidt orthogonalization procedure

[a],z(&)i/{jE(&)j (&)j}"z, a1, (11)
where

(@)= -5 Dlef @8+ @, a>1, (72)
and

@), = @),. (73)
However, we must prove that

[B]i - (B)gL:o= [Za]i - (é)glg=0=0 (74)

is satisfied for the new coefficients, because in this
case W(0)<0 and W(s) has a minimum for s > 0. Here
W(s) stands for W((1],, -=+,[N],). The first equality in
(74) is trivial, In order to prove the second one, we
note that

[+3

@F1),}0= - 2 D@ (aF1), ), + (B (1), (B,

-, —~ _ ———
+(B)J}'k(a+1)j(ﬁ)i}+(d+1)1]350=(a+1){1§=0, (75)
where we have assumed that (E)i ={(@);]s, for a< g,
Taking Eq. (73) into account, we see that (§),];,
= (&), s holds by induction. Thus, by Eq. (71), we
obtain

(8], = (@), - $(a), Z{@X@), + (@F@),]k.o= (@), |
! (76

which proves that the second equality in (74) is also
valid,

We are interested in finding the minimum of W(s).
For this we need W,
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W=221, (alilal, +[al(4],)

+2 20 Ve (TR el ), + Ll A anl e, )

aB ij

where, due to (71), [&], is given by
(4], = @,AD @@,

b

(78)

3/2
Ji

L@, DI@FE), + (&;(Z),]/{j& (E),.*(Z)}

(5)i being generated by the recurrence formula [see Eq,

(72)]

a>1; (@)= - BE;J_E{[B],.*@,[B], +[8]y @18},
+ [BL*(&),-[BL}+ (@), (79)
with
M), =), (80)

The function of Win the procedure developed in this
section can be best seen if the iteration algorithm is
presented in detail, We start with an arbitrary set of
numbers (&), with the constraints

23 (B =0y, @,B=1,...,N,

. (81)

1
which are a trivial consequence of Eq, (67). Then the
right-hand side of (70) [denoted by (&),] is evaluated for
each « and i, We, further, choose an arbitrary s> 0
and calculate (&), = (a), + s(@);. Using the relations (71),
(73), and (78)—(80), we obtain [a], and [&], so that W
can also be evaluated. If the latter quantity is negative,
another value of s has to be tried until i}y becomes
positive, Now, let { be positive, then there exists §
such that 0 <5< s and for which W(5)=0 (there exist
sufficiently efficient methods in mathematics for finding
this 5). The last check consists in proving the inequality
(s) < W(0) which states that we have found the local
minimum of VV(s), the existence of which is guaranteed
from our previous considerations. The new (a); are
defined by the transformation

(82)

where these (a), obviously fulfill (81) and one can use
them as initial values of another iteration step, Since
this algorithm guarantees the convergence of the itera-
tions we obtain (a), —~ (a)f'F,

6. SUMMARY

The theory of convergent iterations developed in the
second section has been applied in detail to the HF
equations and we shall briefly compare the various ver-
sions presented in Secs. 3, 4, and 5:

(i) Sec, 3: The theory takes on a particularly simple
form, however, the two-body interaction has to be
modified in order to enforce the orthogonality of ¢’s.
The starting values of a new iteration step are obtained
by means of zeros of the polynomial (40),

(ii) Sec. 4: The latter property holds also in this case
where the corresponding polynomial is given by Eq. (65).
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No. modification of the two-body interaction need be
done, but now a number of minors have to be evaluated
so that the procedure is limited to a small number of
particles.

(iii) Sec. 5: This version of the method makes direct
use of the constraints (6'7) so that the introduction of
minors is completely avoided. Since [a], are no longer
rational functions of s the problem of minimizing W
cannot be converted to the problem of finding zeros of a
polynomial. Thus a standard but lengthy algorithm (71)—
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(73) and (77)—(81) has to be applied.
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Construction of a meromorphic many-channel p-wave S

matrix
Joseph R. Cox and Hugo R. Garcia*

Department of Physics, Florida Atlantic University, Boca Raton, Florida 33432
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The simplest possible nonrelativistic many-channel p-wave S matrix which is meromorphic on its energy
Riemann surface, as well as the underlying potential matrix, is explicitly constructed by means of the many-
channel Marchenko equations. The results suggest that, contrary to the case in which no coupling between
channels is present, such an S matrix necessarily increases in complexity with increasing angular momentum.

1. INTRODUCTION

The many-channel problem! is an approximation to
the nonrelativistic quantum mechanical inelastic scat-
tering problem. The approximation consists of assum-
ing that the target cannot be broken up by the oncoming
projectile. Thus, all possible initial and final states
(i. e., channels) of the system consist of the projectile
plus the target in the ground state or in any one of a
finite number of discrete excited states. (A slight modi-
fication of the approximation also provides a crude
model for rearrangement processes where the channel
reduced mass undergoes a change. ) Although a fairly
satisfactory understanding of the scattering certainly
requires a more sophisticated {and complicated) ap-
proach which takes into account the continuum states of
the target, such as the one based on the Faddeev equa-
tions, ° the many-channel approximation is, neverthe-
less, often quite reasonable when the energy is far be-
low the target breakup threshold, and it has furnished
considerable insight into the many-particle scattering
processes in atomic, nuclear, and particle physics.
(See, for example, Refs. 1, 3, and 4.)

Our main purpose in this paper is to construct ex-
plicitly the simplest p-wave many-channel S matrix
(for spinless particles) which is meromorphic on its
energy Riemann surface, and also to construct the
corresponding (time reversal invariant) potential
matrix.

Sections 2—4 are introductory in nature. In Sec. 2
the coupled radial Schrddinger equations, the Jost func-
tion, and the S matrix for arbitrary angular momentum
are introduced. Section 3 consists of a brief discussion
of the many-channel Marchenko equations which pro-
vide a means of solving the inverse problem at fixed
angular momentum. Section 4 reviews the Fredholm
determinant and its relationship to the S matrix, bound
states, and resonances of the many-channel system,
and briefly discusses the Bargmann potentials. Finally,
Secs. 5 and 6 are devoted to the construction, by means
of the Marchenko formalism, of a meromorphic p-wave
S matrix together with the associated potential matrix
which describes the interparticle forces.

The methods employed in this paper have close
counterparts, in the uncoupling limit, to those recently
employed in several other areas of physics. These
areas include the construction of soliton solutions of the
(nonlinear) steady-state Korteweg—de Vries equation in
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plasma physics, *¢ and the construction of coherent
optical pulse profiles which exhibit lossless propagation
during transmission through a resonant atomic medi-
um, ' In addition, coupled equations related to the two-
channel problem have been obtained in connection with
the problem of diffraction of an elastic wave by a
spherical area included in an infinite homogeneous
medium,

2. PRELIMINARIES

The basic radial integral equations of the conven-
tional many-channel inelastic scattering theory' may be
expressed in matrix notation as

UK, 7) =, (K, 7) + [ dr' G (K v, v V), (K, 7).

(2.1)
Herel=0,1," -, (K, 7) is an nXn matrix, where n is
the number of channels. K is the nXn diagonal matrix
of the channel wavenumbers &y, ..., R,

Kij=k;idy;, 4,i=1,...,n 2.2)
Conservation of energy h‘zki/ZM of the system is ex-
pressed by

R=kis Al j=1,...,n, 2.3)

where 1. is the (common) channel reduced mass and
BAY/2u, A;>0, is the threshold energy of the jth
channel, The Green’s function G,(K;»,#’) in (2.1) is
the diagonal » X»n matrix

G, (K; v, 7") = (=K Yy, (Krw, (Kv,), (2.4)
where #, and ,; are spherical Bessel functions:

U;(Z) = (TTZ/2)1/2J1+1/2(2),

1w,(z) =i exp(inl) (nz/2) 2H, 0y 1o (2). (2.5)

V{7) in (2. 1) is the nXn symmetric potential matrix;

it will be restricted here to depend only on 7 and to be
“well-behaved”—i. e., all elements are not as singular
as 7 as » — 0, all diagonal elements vanish more
rapidly than 72 as » —«, and all off-diagonal elements
vanish more rapidly than any inverse power of # as

9 — o0,

Equation (2. 1) implies that , (K, ) satisfies the cou-
pled radial Schrddinger equations

1(7+1)
ARy

~ (K, 7) +(V('r) = ) P (K, 7) =K%, (K, 7). (2.6)
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We define the » xn matrix F,(K,7) as that solution of
(2. 6) which obeys the boundary condition

limexp(-iK¥}F;(K,7)=1. 2.7
Then the Jost matrix! £;(K) is given by
£,(K) = (—iK) @ -1)111 111?7‘17,(;{, 7), (2. 8)
i

where the tilde denotes matrix transpose, and the S
matrix is given by the open-channel submatrix of S, (K),
where

S;(K)=K1%g (- K)2{(K)K' /2., (2.9)

Since there must be conservation of current in the open
channels, this open-channel submatrix is unitary. An-
other important property of S;(X) is that at all energies
it is symmetric:

S,(K) =5, (K). (2.10)

3. THE MANY-CHANNEL MARCHENKO EQUATIONS

The one-channel inverse scattering problem at fixed
angular momentum, i.e., the problem of constructing
the potential from scattering (and bound state) data in
one partial wave, has been solved long ago. ? Of several
alternative solutions the one given by Marchenko!® ig
the most useful for our purposes here, The generaliza-
tion to many coupled channels of the Marchenko solu-
tion has been obtained by Cox!"!? and some results are
as follows.

Suppose that for a given ! there are N “all channels
closed” bound states of the system with energies E;
=i (k{"?/2u, j=1,...,N, and that the n-channel
matrix S;(K) is given for all positive energies. Then one
constructs the matrix function

Gy, 7"y =(1/2m) [ dbyleyue, (K¥)K-V/2[S,(K) = 11K~ 2w, (Kv")

N
- 20 w0, GK D7) AW GK Py, (3.1)
Jj=1

where the 4; are certain real symmetric matrices,
w,(Kv) is given by (2. 5), and the integral in (3.1) is to
be done on the real k; axis for which Imk,, ..., %, >0,
G,(r,#') serves as the kernel of the matrix integral
equation

A v, v") =G, r,v") + frw ar"A, (v, v")G, (r", "), v >7.
(3.2)
A knowledge of A,(r,7’) then furnishes the potential

matrix according to

d
V(7)7—2d7,A,(7,1)

and the solution F,(K,7) [see Eqs. (2.6), (2.7)] of the
coupled Schrddinger equations according to

Fyll, v) = (= i)' [y, (Kr) + [.” ar'Aytr, v, (Kr)]. (3. 4)

(3.3)

It will prove useful for our purposes to note that one can
then use (3. 4) to reconstruct, via Eqs. (2. 8) and (2. 9),
the original matrix S,(K) in (3.1), thus verifying the
self-consistency of the whole procedure,

Two remarks should be made here concerning Eq.
(3.1). First, direct use of (3.1)—(3. 3) in order to
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analyze scattering data is not possible, because only
the open-channel submatrix is accessible to experimen-
tal determination. Although it is possible in principle
to continue analytically all elements of this submatrix
to energies where all channels are closed and thus find
S;(K), no general method for doing this is known to us.
Second, the many-channel Marchenko equations are of
use only if the integral transform in (3. 1) exists, and
this imposes stringent requirements on the matrix

S;(K) for 1> 0. For example, in the one-channel case

w, (K7) ~k{* as b, — 0, so the integrand in (3.1) diverges
as k, ~0 unless [S;(K) - 1] vanishes ther at least as
fast as k%, For this reason the one-channel
Marchenko equations are not ordinarily used for I >0,
Instead, another formulation of the inverse problem,
the Gel’fand— Levitan equations® is used. However, even
though the Gel’fand— Levitan equations have been gen-
eralized to the coupled-channel case, '3 and there is no
divergent integral problem there for I > 0, the input is
not at all accessible to experiment, nor, contrary to
the case of the coupled channel Marchenko equations, is
it likely that any exact closed form solutions with S, (X)
meromorphic exist even for { =0, !® Thus, in any in-
vestigation of closed-form solutions to coupled channel
problems for />0, the only recourse, to our knowledge,
is to use the Marchenko equations with due attention to
the difficulties outlined above,

4. PREDHOLM DETERMINANT AND
MEROMORPHIC S MATRICES

The matrix integral equation (2. 1) is of the Fredholm
type and thus has associated with it a Fredholm deter-
minant A;(K) =4, (ky,...,k,). It is identical with the
determinant of the Jost matrix of Sec. 21

8,(K) = detg, (K). (4.1)

It is this single function A;(K) which most conveniently
characterizes the scattering, bound states, and reso-
nances of the coupled-channel system for a given /.

Suppose in what follows that A,(K)} is known in analytic
form. Then all elements of the open-channel S matrix
can be constructed from it according to the rules!

(St)aa = Ar By, ..oy = kg, ... )/ 0(K), 4.2)
[(Sl)ab]z = (Sl)aa(sl)bb— Al(kb ey T ka? - kb} L )/AZ(K)7
(4.3)

and hence the cross sections can be computed.

Associated with A, (K) {or any other function of K such
as S;(K)] is a k; Riemann surface consisting of 2" half-
planes, each distinguished from the others by its
particular combination of signs of the imaginary parts
of all the » £’s, and having branch points at &
=+ Ag,...,+ A, which for the positive sign correspond to
the threshold energies of the second through nth chan-
nel, respectively. [One is led to these conclusions by
eliminating %,, . ..,#%, in favor of #; from A,;(K) by
means of (2. 3) and considering ky a complex number. |

The following properties of A;(K) on this &, Riemann
surface are well known whenever the potential matrix
has finite first and second absolute moments, ! A (K)
—~1as lky| ~ in the half-plane Imky,...,k, >0, and it
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is also a regular analytic function there. Furthermore,
it can have no zeros in this half-plane except possibly
on the imaginary axis. Zeros on the imaginary axis
give rise to conventional “all channels closed” bound
states of the system. (Zeros which lie on the positive
real k; axis below the highest channel threshold give
rise to bound states “embedded in the continuum, )
Finally, all zeros and poles of A,(K) off any imaginary
axis must occur in pairs symmetric about the imaginary
axis,

Thus we see that for the purposes of model-building
it is natural to consider those systems where 4,;(K) for
a given ! is a meromorphic function of 2, on the ap-
propriate Riemann surface. (By this we mean that the
only singularities of A; on such a surface are poles, )
If exact solutions to the coupled Schrédinger equations
were known for these systems, then one could con-
struct potential matrices which give rise to the desired
number and energies of bound states and resonances
simply by making the appropriate choice of poles and
zeros of A;(K).

For the one-channel case, corresponding to a two-
particle elastic process via a central potential, such a
A, (K) would be simply a rational function of k =k,

k-
Aalk) = I;I -8~
where, as follows from the discussion above, the num-
ber of zeros equals the number of poles, Imf; <0, and
those ¢;’s in the upper half plane are on the imaginary
axis and correspond to bound states. All those poten-
tials V(») which give rise to 4;(k)’s of the form (4. 4) are
known exactly in closed form for all / in ferms of the
a;’s and B;’s for the appropriate I. ! Such potentials are
known in the literature as Bargmann potentials.

4.4)

A generalization of the Bargmann potentials to the
case of many coupled s-wave (I = 0) channels has also
been obtained. 1 The corresponding generalization of
(4. 4) is of the form

A(K) =det 1+i25 Ny(K +ib D)1 | (4.5)
i

where the N,’s are certain interrelated nxn matrices,
and the bY"’s are diagonal matrices of order » whose
elements b’5,, are connected by

(b;i))2:(b;j))2_ Ai’ p=1,...,n, (4.6)

where 4, is the same as in (2. 3).

It turns out that the simplest allowable version of
(4. 5) with coupling present is of the form

Ay (K) = det[ (K +iA)K +ib)™1], 4.7

where A is a real symmetric nXn matrix. For n=1 this
reduces to a rational function of £ with one zero and

one pole. However, for n>1 the pole and zero structure
of (4.7) is much more complicated. *

The main purpose of the following sections is to begin
to generalize the Bargmann potentials to the case of
many coupled p-wave (I =1) channels by using the many-
channel Marchenko equations in a similar manner as
was done earlier for the s-wave case. Although we will
only arrive at the analog of (4.7) for the coupled p-wave
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case, the analysis will point the way for obtaining the
analog of (4. 5).

5. SEARCH FOR A “ONE POLE" p-WAVE S MATRIX

Assume there are no p-wave bound states. Then the
p~wave version of (3. 1) reads

anwh%;f dkyk o (Kr)K-12[SK) — 11K 2w (Kr"),

(5.1)

where we have suppressed the subscripts I =1 on w(K%)
and S(KX), and where, according to (2. 5),

w(K7) =[i - (K¥)™] exp(iK¥). (5.2)

We are of course ignorant of the exact analytical form
of S(K) in (5.1). However, recall from Sec. 3 that the
k4 integration is to be done on the real 2; axis for which
Imk,,...,k,>0. If S(X} is a meromorphic function of
ki, as we assume here, then we can evaluate (5. 1) by
contour integration. The appropriate closed contour ¢
consists of a large semicircle in the half-plane ImK
>0 plus the real &, axis with small semicircular de-
tours to avoid the threshold branch points and a possi-
ble simple pole at £, =0. According to the discussion

of Sec. 4, the simplest (nontrivial) meromorphic S
matrix then appears to be the one which has only one
pole within ¢, We will call this S matrix a “one pole”

S matrix even though in general it would have addi-
tional poles in other half-planes. This section is de-
voted to an attempt to construct a one-pole p-wave

S matrix when there are no p-wave bound states. Al-
though the attempt does not prove successful when
coupling is present, it is instructive in that it leads
unexpectedly to a new s-wave S matrix and also furnish-
es valuable insight into the correlation between the
poles of the S matrix and the “angular momentum” pole
of w{K7) which will be useful in the sucessful construc-
tion of a “two-pole” coupled channel S matrix in Sec. 6.

For a one-pole S matrix we expect that (5. 1) yields
Glr, ") == w(ibr)Cuw(ibr') + (r7') D, (5.3)

where the pole position is K =4b [as in (4.7)], and C
and D are real symmetric » X» matrices. This conjec-
ture is a natural generalization of the one-pole version
of G(r,7’) in the one-channel case. In this case, ac-
cording to the discussion of Sec. 4, we would have

k+ia
weib 270

AR) =

and consequently, according to (4. 2),

k—ia k+ib

k+ia k-ib’ 5.4)

31(k) =

Insertion of (5.4) in (5.1) and interpretation of the in-
tegral in the principal value sense then easily leads to
an expression of the form of (5. 3).

Equation (5. 3) may be written in matrix notation as

Glr,v')=A@)B("), (5.5)

where
v =), B0 =(5), (5.6)
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and where
A, =—iw(ibr), Ay=77,
B ==-iCw(ibr), By=Dr.

[Note that both A(») and B(r) are rectangular matrices,
since each of their two “elements” in (5. 6) is itself an
nxn matrix. } Equation (5. 5) is a degenerate kernel in

the matrix sense for the (Fredholm) Eq. (3.2) and can
thus be solved exactly. The solution is

(6.7

Alr,7") = APQ™ (r)B(), (5.8)
where
QU =1~ [ ar'BrHAG"). (5.9)

Insertion of (5. 8) into (3. 4) and evaluation of the inte-
grals yields

F(K,7r)=-i[wEr) + A@)Q " (r)P(7)], (5.10)
where

() =(§;>, (5.11)
and where

py=— C[(K +ib)™ + (Kbr)™] exp[i(K +ib)7],

Do = — D(KY)™ exp(iK7). (5.12)

According to (5.6), (5.7), and (5. 9) the 2r X2n matrix
Q(r) is

Q(r)=(g;i 3;'; ) (5.13)
where

Q=1 - Cb {5+ (b7) ] exp(- 2b7), (5.14a)

Q=- C(br)! exp(- br), (5. 14b)

Qqy == D(b¥) ! exp(- br), (5. 14c)

Qg2 =1-Dr, (5. 14d)

Although (5. 10) formally should be a solution of the p-
wave version of (2.6), as it stands it is of little use in
computing the S matrix because of the necessity of find-
ing the inverse of @(») which in the presence of coupling
(n=2) is at least a 4X4 matrix, We now show how

(5. 10) may be cast into a form which does permit com-
putation of the S matrix for arbitrary n.

Let 6(r) be the inverse of @(»), and partition 8(») into
four 7 X#n blocks in a manner analogous to (5. 13):

6y 6
o0 :< 1 12)_
@) b3y By
Then the statement Q(»)8(») =1 may be expressed by the
four matrix equations

(5.15)

Qabebczléacs a,c:l,z, (5 16)

where §,, is the Kronecker delta and where summation

from 1 to 2 over repeated indices is implied. Similarly,

Eq. (5.10) becomes
F(K,7)=-i[w(K,¥) +A,0,,P), (5.17)

which, upon use of (5.12), also may be written
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FK, 7)== i{w(Er) = A0, C[(K +ib)™ + (Kbr)™]
x exp[(iK = b)r] - A,0,,D(Er) " exp(iKr)}. (5.18)

Evaluating (5.18) at X =¢b and then using (5. 14a) and
(5. 14b), as well as (5.7) and (5. 16), we obtain

F(ib,7)=A,0,- (5.19)
Next, we define the matrix Z. (K, ») by
Z K, 7)=[(K - &)t -i(Ker) expli(K - o], (5.20)

where ¢ is an #nX»n diagonal matrix with elements ¢;;
= ¢40;; such that
g=2+al j=1,...,n (5.21)

[See (2. 3). ] Also, we define the projector )%; to be that
nXn matrix which has all elements equal to zero ex-
cept the ith element on the diagonal, which equals one.
Then it follows from (5. 18) and (5. 20) that

W, =[r™ + 4,6,,C(b7)" exp(- b¥) +4,6,D77 P, DKr)™

Xexp(iKv), (5.22)
where
W¢=/%im F(L, v)¢eDEZ (K, v) ;. (5. 23)
&0

Using (5. 14b) and (5. 14d), as well as (5. 16), (5.22)
reduces to

W, = A,0,20:DEY) " exp(iK¥), (5.24)
which, upon summing over 7 from 1 to #, yields

W=A,6,DK»)™! exp(iKr), (5. 25)
where

W=2 W, (5. 26)

i

Finally, insertion of (5. 19) and {5, 25) in (5. 18) yields,
upon use of (5. 23) and (5. 26),

FK,rY=i —wE»)+ F(Eib,v)CZ,,(K,7)

+25 lim [F(g,7)eDeZ (K, 7)p;] .
¢ P

Equation (5. 27), which reveals explicitly the contribu-
tions due to the “pole” and threshold branch points,
lends itself to analysis much more readily than does
(5.10).

The third term on the right side of (5. 27) (i. e., the
summation term) actually depends on X only through a
factor K-! on the right, as may easily be seen from
(5. 20). Thus, by setting K=:¢b in (5. 27) and using the
resulting equation to eliminate the summation term
from (5. 27), we obtain

{(5.27)

F(E,v)={(1 = ibK"1) +{F(@Eb, )[C(K +ib)™1 = (2K)™)
X exp(~ br + bK™ exp(b7)]} exp (iK7). (5.28)

On the other hand, setting X =¢ in (5. 27) and using the
resulting equation together with (5. 27) with K =4b to
eliminate the summation term, we obtain

F(b,7)=[b(D -7) - 1){[b exp(br) = 3C exp(~ b7)|(D - ¥)

+Cb-lexp(- br)} 1. (5.29)
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If conjecture (5. 3) is correct, then (5. 28) must solve
the p-wave version of (2.6). [Note that (5. 28) certainly
satisfies (2.7).] However, if we use (2.8) and (5. 28),
but not (5. 29), to calculate the Jost matrix, we find
that, in the presence of coupling, it does not satisfy
(2. 10) and hence does not produce a symmetric p-wave
S matrix. This is surprising, because, as demonstrat-
ed in Appendix I, (5.3) is of a form which guarantees
a symmetric potential matrix, which in turn “must”
produce a symmetric S matrix. We are thus led to in-
quire whether (5. 28) is indeed a solution of (2. 6) for
some well-behaved potential matrix, The potential
matrix may be calculated explicitly. First, we apply
the technique used to go from (5. 10) to (5. 27) to (5. 8).
The result is

Alr,r') =i (— F@b, v)Cul(ibr’)
+2 lim [F(s,w)gngn:(zv')p,.l) (5.30)
boPe

Then, setting K =¢ in (5. 28) and using the resulting
equation to evaluate the sum in (5. 30), we obtain

Vir)==2/v" - 2;;% {F@b, r)[3C exp(~br) + bexp(dn) 1},
(5.31)

where we have also used (3. 3). Using (5. 28), (5.29),
and (5.31) we can check by direct substitution whether
(2. 6) is satisfied. This is done in Appendix II. What we
find there is that (5. 28), (5.29) solve the p-wave version
of (2. 6) with potential (5.31) only if D is diagonal. How-
ever, according to (2.8), F(ib,r) must have, for any
well-behaved potential matrix, an ™! singularity at
»=0, and (5. 29) can have this property only if C and D
are related by

C =2bDb(Db - 2)°!, (5.32)

which implies in turn that if D is diagonal, then so is C.
Unfortunately, if C and D are both diagonal, V() is
diagonal and there is no coupling. We conclude, there-
fore, that (5. 28) does not, for any choice of C and D,
furnish a solution of the p-wave version of (2.6) with a
well-behaved, nondiagonal potential matrix,

It can be shown that, as expected, in the uncoupled,
one-channel limit, where C, D, and b are numbers con-
nected by (5.32), (5.31) is well behaved at v =0 and is
in fact the well-known Bargmann potential which pro-
duces the S matrix given by (5.4), where there a is a
function of C and D.! In this uncouplied case the singular
first term on the right side of (5. 31) is precisely
cancelled by a part of the second term. In the presence
of any coupling, however, this part of the second term
becomes nondiagonal, the cancellation fails, and V(»)
becomes singular at » =0 precisely as — 272, However,
this precisely cancels the p-wave barrier term in (2. 6).
Consequently, we are led to the following conclusion.
Equations (5.28) and (5. 29) with D diagonal and C non-
diagonal constitute a solution of the s-wave {{ =0) ver-
sion of (2. 6) with the (nonsingular) potential matrix

d
Vir)=-2 o {F@b, )] 3C exp(~ br) + bexp(bn)]}. (5.33)
The corresponding s-wave Jost matrix may be easily
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calculated from (5. 28) and the s-wave version of (2. 8).
We obtain

£0(K) = (K% +iR(K + Ry)[K(K +ib)]?, (5.34)

where
Ry =F(ib,0)(3C +b), R,=[b+F@b,0){(5C - b)]b, (5.35)

and where F(ib, 0) is given in terms of C and D hy
(5. 29). The S matrix is then obtained via Eq. (2.9) or
Eqgs. (4.1)—(4.3). It is

So{K) = (K + iDYKY HK® +iRyK + Ry)™

X (K* — iR K + Ry)K™3/2(K 1 1D), (5. 36)

and, as expected, it can be shown to be symmetric.

It is interesting to note that, according to (4. 6), we
can never have, for any j, 0%’ =0 in (4. 5). Consequent-
ly, the determinant of (5. 34) is never of the form (4. 5),
and thus, to our knowledge, (5.33) and (5. 36) constitute
a new exact solution to the s-wave coupled channel scat-
tering problem. However, the presence of the factor
K~/% in (5. 36) produces infinite cross sections at
thresholds for all production reactions, and hence (5. 36)
is rather pathological.

6. THE “TWO-POLE"” p-WAVE S MATRIX

Let us recall the nature of the difficulty encountered
in the search for a one-pole solution in Sec. 5. The
matrix D had to be diagonal in order to have a solution
to the coupled p-wave Schridinger equations, and at the
same time C and D had to be related by (5. 32) which in
turn implied that C was also diagonal and hence that
there could be no coupling. All this suggests to us that
(5. 3) provides insufficient “degrees of freedom” for a
p-wave solution, and so should be replaced by the “two-
pole” expression

G, r") == w@br)Cre @br’) — wliar)EwGar’) + (7r')"'D,

(6.1)

where now both € and E are real, symmetric, non-
diagonal, nXn matrices, D is nXn, real and diagonal,
and @, as well as b, is diagonal and has its diagonal ele-
ments connected by a relation of the form (4. 6). We will
now show that (6. 1) does produce an exact, trouble-free,
p-wave solution in the presence of coupling and that this
solution is self-consistent in the sense that it gives
rise to an S matrix which, when inserted in (5.1), leads
again to (6. 1),

The method of analysis used on (5. 3) is also easily
applied to (6. 1) with the result that, as expected, the
generalization of (5. 27) is

F(K,¥) =1 (— 1w, ) + Fea, ¥)EZ (K, 1)+ Fib, 1)CZ (K, 7)
+27 lim [F(g,1’)§D§ZE(1(,7‘)/71-]>. (6.2)
v
Using (6. 2) together with (6. 2) evaluated at first K =70
and then at K =ia to thus eliminate in two ways the sum-
mation term in (6. 2), we obtain, respectively,

F(K,7v)={(1 —ibK-Yy i FGa, v)E[(K +ia)™ = K™ a + b)|
X exp(— ar) + 1 F (b, »)[C{K +10)™ = (2/)™)

x exp(— 1) + DK exp(D1) ]} exp ((K7) 6.3)

and
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FE,»)={(1 - iaK™!) +iFGa, r)[E((K +ia)™" - 2K)™)
x exp(— av) + aK™! exp(ar)} +iF(ib, v)C[(K +ib)™
6.4)

Finally, setting K =¢ in (6.3) and using the resulting
equation to evaluate the summation term in (6.2), we
obtain one additional expression for F(K,7):

F(K,7)=i{(1 = bD)r™ + Flia, ) E[(K +ia)™ + (Kar)™

— aK(a + b)) exp(- br)} exp(iK7).

— bD(a + by (K¥) '] exp(~ ar) + F(ib, )
x[C((K +ib)™ + (Kbr)™ - D(2K¥)™) exp (- b¥)
+ bD(K7) exp(br) |} expGK7). (6. 5)

From (6. 5) and (2. 8} we see that the condition for
F(K,7) to have a »~! singularity at » =0 is

a'g(Ga)E[a™ - bD(a+ b))+ b€ (ib)[3C(2b™1 - D) + bD] =0,
{6.6)

=2

Equation (6. 6) sheds new light on the difficulty en-
countered in Sec. 5. If E=0 [and we assume £(¢b) to be
nonsingular], then condition (6. 6) reduces to (5. 32)
which cannot be satisfied for diagonal D and nondiagonal
C. Equation (6. 6) thus reveals the necessity, in the
presence of coupling, of having at least two nondiagonal
matrices (C and E) in addition to the diagonal matrix D.

Comparing (6. 3) and (6. 4), we see that
F(ia,r)[- tE(a+b)™" exp(— ar) + ala + b)! exp(ar)]

~ F@b,7)[3C(a+b) " exp(- br) +bla—b) Texp(br)]=1,

6.7)
from which it follows, according to (2. 8), that
a'£(ia)(a- SE)(a+b)!

=b € (ib)[5C(a+b) + bla- b)) (6. 8)

If we now use (2. 8) to compute the Jost matrix from
(6.3), (6.4), and (6.6), we obtain three alternative ex-
pressions of the form

£(K) =K[aK® +iPK + Q[K(K +ia) (K +ib)]!, (6.9)

with three alternative expressions for the real

matrices @, P, and §. Comparing these expressions
and making use of (6. 8), we conclude that

& =agGa)Eala+b)t + b€ @) [EC +b] =1, (6.10)

P=a+b-agia)Ea-b1EGb)Ch, (6.11)
and

Q=[ag({a)E + b€ (ib)C - 1]ab (6.12a)

=[a"'gGa)Ea(a + b)Y + b1£ (ib)(3C - b)ab™1]b%. (6. 12b)
From (6. 9) and (6. 10) we then have
2(K) =K[K?+iPK + Q)[K(K +ia)(K +ib)] . (6.13)

Next, we wish to establish the relationship between P
and @ in (6. 13). Using (6. 12b) we can write (6, 6) as

@D =a"'€Ga)Eb + b€ (3b)Ca. (6.14)

On the other hand, using (6.12a) and (6. 11) we see that
the right side of (6. 14) is simply Q@'+ 5!} + P. Thus,
assuming @ is nonsingular, we conclude that
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(6.15)

Since a, b, and D are diagonal, we conclude from (6. 15)
that

D-at b+ B,

Pt=41, (6.16)
where d is the diagonal matrix

at=D-a'lp, 6.17)
and also that

PQ=QP. (6.18)

Although it is not easily seen from (6. 11), we will find
later that, also,

p=p (6.19)

It is interesting that (6. 16) and (6. 19) also follow
simply from the requirement of time reversal in-
variance. To see this, we ask how P and @ must be
related in (6. 13) in order to satisfy (2. 10), The answer
is that we must require that the quantity P[1+K-2@] be
symmetric for all energies, which, upon use of (2. 3),

implies (6. 19) and also that
PRIPP; =P PR,

where ; is the same projector as was used in (6. 2).
Summing over 7 in (6. 20) we immediately infer (6. 16),
i. e., that PQ™! must be diagonal.

(6.20)

Finally, using (6.16) and (6. 19) to eliminate GN,) in

(6. 13), we obtain
£(K) =K[K® + P(iK +d)|[K (K +ia)(K +ib)]™. (6.21)

The Fredholm determinant is then, from (4. 1) and
(6. 21),

AK) = Y(K)[det(K +ia)(K +ib)]™!, (6.22)
where
Y(K) = det[K?® + PGK + d)]. {6.23)

In accordance with the assumption of no p-wave bound
states, P and d are assumed to be chosen in such a way
that

Y(E)#0, Imk;>0, i=1,...,n. (6. 24)

[That such a choice is possible is easily seen by
examining (6. 23) in the uncoupling limit. |

For the case of two channels, for example, (6.22)
becomes

2 -1
Alley, ky) =Y {ky, k2)<. 1 {k; +ia )k, +ib,-)) , (6.25)
i=
where
Y(ky, ky) = B3RS + Gly +dy) (ihy + dy) Aet P + k3P, (iky + dy)
+k3 P, (iky +d,), (6.26)

and where d; and P; are, respectively, the diagonal
elements of d and P. The S matrix is then, according
to (6.25), (4.2), and (4. 3),

Y(=Fky, ko) (ky +ia)(ky +iby)
Yy, og) (o, — 3y) (e, — b))

s, = YRy, = ko) (k2 +7az) (k2 + 1by)
BT YAk, ko) oy — i) (ky - 1Dy)

Sy =

(6.27a)

(6. 27b)
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— 24 (k1k2) 2 Py(ky — iay) (ke — ib2)
Y(k1,k2)(k1—ia1)(k1—ib1) ’

Sz =Sy = (6. 27¢)

where P; is the off-diagonal element of P,

The generalization of (5. 30) to the “two-pole” case
can be shown to be, as expected,

A, v =i (-— F@b, v)Cw(ibr’) — F(ia, v)Ew(iar’)

+25 lim [F(g,r)gD&zu(gr’)P;]). (6. 28)
¢ /9,':-'0

Using (6. 3) to evaluate the sum in (6. 28) and then sub-
stituting into (3. 3), we obtain the potential matrix
d

V) ==-2- {- by~ + F(ib, 7)[r™(zC(2b™! - D) exp(- br)

+bD exp(br)) + C exp(— bv)] + Flia,r)

x[r"1E{@! - bD(a+ b)™ +7) exp(- ar)]}. {(6.29)

From (6. 6) and (6. 10) we see that the expression in
curly brackets in (6. 29) is not singular at » =0 (the
terms proportional to ! and % each vanish) and con-
sequently that the potential matrix is now well behaved
at » =0 in the sense of the discussion of Sec. 2. Also,
it is possible to show, using (6. 29) and (2. 7), that if
D+#0, then the large-7» behavior of V(r) is 4Dv~%, and

if D=0 [which corresponds, according to (6.17), to one
particular choice of d for a given a and b], then the be-
havior is that of a decreasing exponential, i.e., larger
of 2 exp(- b¥)(bC + Cb) exp{(— br) and 2 exp(- ar)(aE + Ea)
xexp(~ ar).

We want next to show explicitly that the two-pole S
matrix we have constructed above, when inserted in
(5. 1) really does produce (6.1) as it must for self-
consistency. This furnishes an indirect check that (6. 5)
and (6. 29) satisfy the coupled p-wave equations (2. 6).
A direct proof of this fact can be constructed along
similar lines as the proof given in Appendix II, but we
will not give it here.

According to (2. 9) and (6. 13), (5.1) now reads

G(V,y'):ipfw dk ki wKr)AEK)wEKY'), (6. 30)

27 w
where P denotes principal value,

AK)=K12[S(K) - 1)K/, (6.31)

and where, also,

A(K) = - 2iK[KXP - a~b) - (a+b)Q ~ abP]

X[ (K +iKP+ Q) (K —ia)(K —ib)]™. (6.32)

The integral (6. 30) is to be evaluated by contour inte-
gration over the contour ¢ described at the beginning of
Sec. 5. First, let us compute the residues of the sim-
ple poles at K =ia, K=ib, within ¢, of the integrand of
(6. 30). Denoting this integrand by A(K), writing

AK) =G, () (K +ib)™ = G, (K) (K +ia)?, (6.33)
and using (2. 3) and (4. 6), we see that
Res A(K) = aj'G,(ia)a, ResA(K)=bi'G,(ib)b. (6.34)

ki{=iaq ky=iby

Hence, from (6.30) and (6. 32)—(6. 34), we have
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21 Res A(K) = - w(@br)Cw(ibr'),
k1=ia1
(6. 35)

27 Res K(K) =—w(iar)Ew(iar’)

Bq=iby ’

where we have defined C and E by
C=2(@+b)(b-P-b1Q)b+P-b1Q)y (b-a)'b (6.36)
and
E=2(a+b)a-P-a'Q)a+P-alQ)l(a-b)ta. (6.37)

[Since C=C and E=F, it follows from (6. 16) and either
(6.36) or (6.37) that P=P.] Equations (6. 35) furnish
the first two terms on the right side of (6.1). As we
will now see, the third term is due to the threshold
branch points and the angular momentum pole at the
origin.

The residue of the integrand of (6. 30) at the simple
pole at 2, =0, k;=iA;, j=2,...,n, is found to be, upon
use of (6. 16),

7 ResA(K) = = rr’) [ (ay + by)dy + agby | imp,[(K* P! + iK + d)
k1=o k1 ~0

x (K - ia)(K - ib)]™. (6.38)

Further evaluation of (6. 38) depends on the easily
proved fact that if M is any nonsingular matrix with ele-~
ments M;; such that P,M=M;,;7;, then

PiMt = M,,)1p,. (6.39)
Applying (6. 39) to (6. 38), we find that
7i ResA(K) = — (a7' + b7t + d;) ()1 Py (6. 40)

k=0

Again using (6. 39) it is straightforward to show that the
contributions to the integral in (6. 30) from the thresh-
old branch points at ky =+ A; and k; = — A; are equal and
that their sum B; is simply

B, =—(@;'+ bt +a)orr') Py, i=2,... 0. (6. 41)

Finally, adding together (6.40) and (6. 41), we obtain
— (@ bt d V) rrt)t,

which, upon use of (6.17), indeed yields the third term
on the right side of (6. 1). (The contribution of the
large semicircle in ¢ is, of course, zero.)

7. CONCLUSION

In conclusion, we have found that the simplest sym-
metric p-wave meromorphic many-channel S matrix is
produced by the Fredholm determinant (6. 22) and not by
the simpler one-pole expression (4. 7) which would be
the case in the uncoupling limit. We have also found ex-
plicitly the underlying potential matrix. It is interest-
ing to note that if it were possible to factor the expres-
sion K? + P((K +d) in (6. 21) in such a way as to have a
(diagonal) factor (K +ia) or (K +ib) on the right, then
(6. 22) would indeed simplify to an expression of the
form (4.7). However, this must be impossible for it is
easily verified that the resulting Jost matrix does not
then satisfy (2. 10) and hence the condition for time
reversal invariance is violated, Our results suggests
also that in the presence of coupling the algebraic struc-
ture of even the simplest possible meromorphic S

J.R. Cox and H.R. Garcia 1408



matrix becomes progressively more complicated with
increasing angular momentum. Finally, we point out
that instead of using C, D, and E as matrix parameters
in the two-pole solution, it would be simpler to use d
and P as parameters. If this is done, then C, D, and E
are given by (6. 16), (6.17), and (6.37). Also, Egs,
(6.3) and (6. 4) with K =ia and K =ib, respectively, then
furnish the matrices F(ia,7) and F(b,7) which are
needed in the computation of, for example, V(r) in
(6.29).

APPENDIX A: PROOF THAT Glr,r') =G(r'r) IMPLIES
Vir)=V(r)

Assume that
Glr,r) =G0, 7). (A1)
Then (3. 2) with #’ =, together with (3. 2), implies that

A, 7)=Glr,r)+ frwdr”A(r, "G, r")
- frw dr'[A(r,r") - Gr,v") A, 7"
+ frm ar'[Ar,v') - G, v A, "),

which, upon use of (3.2) again, becomes

A, v) =G, r) +fr°°dr’ [AG, )G, 7"} + G, r')ﬁ(r, 7’)
_A('r,r’)ﬁ(r, 1")]+frmdr'f:dr”

xA(r,r”)G(af”,r')X(r, 7). (A2)
Equations (Al) and (A2) imply
A@r,7)=A(r, 7). (A3)

Hence, upon use of (3.3) and (A3) we conclude that V()
= Vo).

APPENDIX B: VERIFICATION THAT F(K,r) OBTAINED
OBTAINED IN SEC. 5 SOLVES THE COUPLED
SCHRODINGER EQUATIONS FOR DIAGONAL D

The p-wave version of (2. 6) for F(K,r) is
F'(K,7)=[V(r)+2r? - K |F(K, 7). (B1)

Substituting (5. 28) and (5. 31) in (B1) and using the fact
that K%+ b% is, according to (2. 3) and (4. 6), a multiple
of the unit matrix, we easily find that we indeed have a
solution, provided only that F(ib, 7) is a solution of (B1)
with K =1b.
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Writing F(Zb. ) as given by (5. 29) as

F(ib, v) = NM, (B2)
where

N=[b(D-7)-1],

M =[(bexp(br) — 3C exp(~ br))(D - 7) + Cb~! exp(- br) ],

(B3)

and defining

T = 3C exp(~ br) + b exp(br), (B4)

we find, upon substitution of (B2) into (B1) with K =7b
and subsequent use of (5.31), (B3), and (B4), that the
condition for solution is

M=T'B*N+ TbN-1b"?N, (B5)
However, from (B3) and (B4) it follows that
M=T'bN+Th™, (B6)

Comparing (B5) and (B6) we see that in order to have a
solution it is necessary and sufficient that N and b
commute, which, according to (B3), means that D must
be diagonal.
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On angular momentum and channel coupling for a
meromorphic many-channel S matrix
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Department of Physics, Florida Atlantic University, Boca Raton, Florida 33432
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We consider a class of possible (i.e., not known a priori to be unitary) nonrelativistic many-channei S
matrices meromorphic on their energy Riemann surfaces whose general form is suggested by the inverse
scattering problem. These possible S matrices are associated with n (spinless) coupled channels of the same
angular momentem [, and they reduce, in the one-channel limit, to the quotient of two polynomials of degree
2m in the wavenumber k. It is shown that the assumptions which imply unitarity for real energies of the
open-channel submetrix also imply that no channels can be coupled when m< [.

1. INTRODUCTION

In the well-known (spinless) many -channel model of
nonrelativistic inelastic scattering of a particle by a
target haivng a finite number » of discrete excited states
as described by Newton,' the S matrix S, for orbital
angular momentum / is, under the assumption that the
interaction forces are sufficiently well behaved, the
open-channel submatrix of the »X»n matrix

S=K?/?£(-K)& (KK /2, (1.1)

In (1.1) X is the diagonal »xn matrix of the channel
wavenumbers &, ..., k; conservation of energy 72k%/2u
of the system requires that

R =k A2, (1.2)

where pu is the (common) channel reduced mass and
R*8%/24, &> 0, is the threshold energy of the jth chan-
nel, i.e., it is the energy difference between the ground
state and the (j—1)th excited state of the target. £(K) in
(1.1) is the nxn Jost matrix. Time-reversal invariance
is assumed; thus, S is symmetric. Hence, using (1.1),
we have

oK e(-K)], =0, (1.3)

where the tilde denotes matrix transpose and where the
notation [M], denotes the antisymmetric part of M, i.e.,

i=1, ..., n,

|a1], =1/2(M=M). (1.4)
Properties of £(K) in addition to (1.3) include
£(-K*)=2*(K), (1.5)

where the asterisk denotes complex conjugate, and also
f;&a(ku kay «un, kw oy kn)
=gk, Ry iy =k ooy R, (1.6)

where ¢/, is related to the matrix elements & ,, of £(K)
by

y#a,

2hs=(k/R)E . (1.7

As Newton' has shown, Egs. (1.3), (1.5), and (1,6)
imply that for real energies S, is unitary.

In this paper we are concerned with the specific Jost
matrix

£(K) = K'N(KK ' QY(K),

where Q(K) is the diagonal matrix

(1.8)
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QK) = ﬁl(Kﬂb(ﬂ) 1.9)
and where g
NE) =T, A K, (1,10)

Each 5 in (1.9) is a diagonal matrix of order » whose
elements b;,f 5 s, 21l have positive real parts and are
connected by

(B = (b7 =2, p=1, .. (1.11)

where A, is the same as in (1.2). The matrices A, in
(1.10) are nx»n, not necessarily diagonal, and are in-
dependent of K. They may, however, depend on the
nonnegative integer / and on m, which is assumed here
to be a positive integer. In addition,

A,=1.

.y My

(1.12)

Finally, the A,’s are such that det N(K) has no zeros
when Im %, k,, ..., k,>0unless all &,’s are purely
imaginary.

Equation (1.8) for »> 1 arises naturally from attempts
to generalize the Bargmann potentials® to the many -
channel case via a heuristic procedure which utilizes a
generalization® of the Marchenko?® solution of the one-
channel inverse scattering problem at fixed angular
momentum, The starting point of this procedure is an
assumption about the number and positions of the poles
of S in the region Im k,, k,, ..., k,> 0 and the number
of bound states. The inverse problem formalism then
dictates the underlying solution to the coupled radial
Schrddinger equations and hence the Jost matrix and 5.
Particular coupled closed form solutions which have
been obtained in this manner for the many-channel
problem (x> 1) include the cases /=0, m>17and I=1,
m=2.* However, when /> 0, certain difficulties appear.
One of these, the one to which we address ourselves
here, is that some initial assumptions lead only to a
diagonal S, i.e., to a situation where all channels are
uncoupled. (An example of this is the set of assumptions
which lead to (1.8) with =1, m=1.%) It would be very
helpful to have a means of identifying such cases from
the beginning.

It seems natural to suppose that this difficulty is
closely related to the unitarity (and symmetry) of the S
matrix. For this reason, we initiate a study of the
following question. Suppose (1.8) is given and that the
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A/s (and b'?’s are unknowns. What restrictions are
imposed on them by the requirement that S, be unitary?
In this paper we consider the cases where

(1.13)

It is our main purpose to show that if (1.8) and (1.13)
are assumed, then the requirements (1.3), (1.5), and
(1.6), which together imply the unitarity of S,, also
imply that S, is diagonal. Thus, no finite value of m
yields coupled channels for arbitrarily large angular
momentum [, or, put another way, the polynomials in K
given by (1.9) and (1.10) must be at least of degree I +1
in order for any channels to be coupled.

m <.

2. UNITARITY OF S,

It is readily verified, with the aid of (1.7), that (1.8)
satisfies (1.6); indeed, £’ here is a function of %, only.
Also, Eq. (1.8) when inserted in (1.5) implies

(<)i'mA* =A, 2.1)
as well as
{b*t=1{b,}. (2.2)

[Equation (2. 2) indicates that all poles of £ «5(K) occur
either on the imaginary axis or in pairs symmetric
about the imaginary axis in the &, plane. ] Thus, in
order to ensure the unitarity of S,, we need, in addition
to (2.1) and (2.2), only require that the 4,’s in (1.8) be
such that (1.3) is satisfied. We turn now to this, our
main task in this section.

Inserting (1.8) in (1. 3) and making use of the fact
that, due to (1.2) and (1.11), K%+ (6'?)? is a multiple of
the unit matrix, (1.3) reduces to

[N(K)K*N(=K)], =0, (2.3)
where we have defined

A=21+1, (2.4)
Inserting (1,10) in (2. 3), we obtain

m m=1l

j_Ej f_‘g (4 K%, =0, (2.5)

where the sum over ¢ is over odd integers only, the
sum over y is over even integers only, and the first and
second upper limits on the sums are for m odd and m
even, respectively. (In the remainder of this paper,
unless otherwise indicated, all summations are to be
computed over odd or even integers only, according as
to whether the limits on the summations are odd or
even,) Let /9i be the nXn matrix consisting of all zeros
except that the ith entry on the diagonal is unity. Then,
in light of (1.2), we can write

K=2, kipi’
iCey

r={1, 2, .,

.y 1}

Letting y =8 -« in (2.5), interchanging the order of
summation, and using (2.6), we obtain

(2.6)

21
Z i giﬁk?ﬂ:O’

icc Bl

2.7
where we have defined
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-2
é%w, Be{l, 3, ooo,’r‘n“_l}, (m>1)

8i8™
el m, m+2, ...
Q c H y ° b
welmyy ET7 g 2m =1,
a=8-m m+l,m+38,...,
{2.8)
and also
Qa,Bz[AapiZ&]a" (209)

[The upper and lower members in the sets in (2.8) are
for m odd and m even, respectively.] From (1,13) and
(2. 4) it follows that (2.7) contains only negative integer
powers of kfo Furthermore, as is easily seen with the
aid of (1.2), the functions 22~ are all linearly indepen-
dent functions of k2,. Hence, under the assumption
(1.13), (2.7) implies

gi5=09 BE{I, 3,

Using the fact that, according to (2.9), Q, ,=~Q, ,
and making some simple changes of variables in the
summations in (2.8), Eq. (2.10) can be expressed as

icr, coe, 2m =1}, (2.10)

S BE{ m-?.}

Ena.ﬁ-azo’ 1, 3, co., m=1}), (m>1),

oéf:lo (2.11a)
0’ 2, ooy

Y @ pma=0,8¢ m -1

a=prl 1,3, ..., (2.11b)

We now work out in detail the implications of (2. 11b),
To this end, let N be an integer such that 0 < N<m,
and assume that

b»
o= frl

Equation (2.12), together with Egs. (1.12) and (2.1),
implies that there exists a set of 1/2(m —N+1) real

Qu,5+m-a:0, Be{m—ly m=3, cooy Njo (2.12)

diagonal nX#n matrices D__,, D__,, ..., D, such that
A a=iD_, (2.13a)
and
me2
AB=i<DB+ 2 AO‘DWB_Q>,
=R+l
Beim -3, m =5, ..., N}, (m=3), (2,13b)

The proof is by induction on N, First, assume in (2,12)
that N=m ~1. Then, using (1.12) and (2. 9), we obtain
piAm-l:Am-lpi’
which, upon application of the fact that
pipj:piéii’ (2.14)

leads to the conclusion that A, _, is diagonal, Further-
more, according to (2.1), A, ., is purely imaginary.
Hence, (2.13a) follows. Second, assume that (2.12)
[together with (1.12) and (2.1)] implies (2.13) (when
N=2) and also assume 2,13 with =N-2, i.e.,

¥

a=N=-1

2:0° (2u15)

o, m+N= a=
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To complete the proof, we show that (2.13b) with 8
=N-2, i.e.,

" a2
AN_Z:i<DN_2+ b AaDmN_a_2>, (2.16)
@=N-1
follows. By using (2.9), (2.15) may be written
Ay ,P,) +a=0, (2.17)
where we have used (1,12) and have defined
2 ~
A= E LAmd—N-a-zpiAa]a" (2,18)
a=N=-1
Inserting (2.13) in (2.18), we obtain
=2
—iA= [p{ E Dm+N-2— a} +iA’, (20 19)
oa=N=-1 a
where
-2 -2 ~
A= E "2 I.Aa'Dzm»,N- z-a-a'piAa]a° (2.20)

a=N+1 a’ay+N=1- ¢

Interchanging the order of summation in one of the two
terms in brackets in (2. 20), we find that

A =0, (2.21)

[All subsequent double sums in this paper which are
asserted vanish, vanish for similar reasons as (2.20), ]
Thus, from (2,21), (2.19), (2.18), and (2.17) we have

m=2
[(AN-2—i Z AaDm+N-2- a)pi} _0
a —

o =N=-1

from which we infer, upon use of (2.14) and (2.1), Eq.
(2.186), where D,_, is some real diagonal matrix.

Setting N=0 if m is odd and N=1 if m is even in
(2.13), we have the statement that there exists a set of
real diagonal »Xx matrices D, such that

Apa=tD, (2.22a)
A m=2
AB=1(D5+ 2 AaDm+B_a>,
a=8+1
0,2 ...,
Re m=3;, (m=3). (2.22b)
1) 33 @22y

We now work out the implications of (2.22) and (2.11a).
Let N’ be an odd integer such that 1s N’ < ™% and
assume that

8 -
it m=2, m=4, ...,

Z\ Qa,B-a=0’ BE{

o
o

N'} . {(2,23)
i m=1, m=3, ...,

Equation (2.23), together with Egs. (2.22), (2.1), and

(1.12), implies that, according to whether m is odd or

even, there exists a set of 1/2(m = N’) or 1/2(m — N7=1)
real diagonal »Xn matrices D_, such that

-2

D g+ AaDm-a-BZO’

El

a=1
@ =0
2,4, ...,
Be m=N?, (m>1), (2.24)
1, 3, ...,
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The proof is by induction on N’. First, assume in
(2.23) that N7=m22, Then, according to (2.9), (2.23)
becomes

2 AP A ) =0.

m=1l-

(2.25)

Inserting (2.22) in (2.25), we obtain

5 lAD, 0P, ) =0, (2.26)

m=1-a

where we have made use of the fact that

=2 mn2 ~
5 8 AP Dy e why] =0
a=l a'=m a-1 2m-l-o-o
a=2 o =m-a

Equation (2.26) implies, upon use of (2.14) and (2.1),

that for some real diagonal »X» matrix D_,,
=1

m=2
D,+ 2, AD__,,=0, (2.27)
-1 a=3 m=-o -1
o=

which is (2, 24) with =2, Second, in order to complete
the proof of (2,24), we must show that (for N’> 3) (2,22)
together with (2,24), when inserted in (2, 23) with 8

=N =2, i.e,,

N?-2
N'-3

2 Q’a,N'-z-a =0,
o =1
o =0

(2.28)

implies, with the aid of (2.1), that there exists a real
diagonal matrix Dy,-,_, such that

2
Dyroge + 93 A Dyupa=0, (2.29)

1
[o}

wn

[+'3
i.e., Eq. (2,24) with B=m —(N' -2). By using (2.9),
(2. 28) may be written

N? -2
N?-3 ~
Z [AapiAN-Z—a]a:0° (2°30)
o
Substituting (2.22) in (2. 30), we obtain
N'-2
N*-3 )
Zi-AaDN'—%api]a-’—w:O) (2g 31)
b
where
N g2
V=25 L Yaws (2.32)
a=1 o'=N’
a=0 a’=N"*-1
¢aa’ :[AaDrmN'-Z-a-a' piga']a (2"33)

and where we have made use of the fact that

N*-2 N/-2
Ni-3 N’-3
) Z Z,[jao‘::O:
N-

a=1l @'=N’'-l-w
o=

[

Next, setting -8 =-a’~2 + N’ in (2.24) and using the
resulting equation to eliminate from (2, 32) the sum over
a’, we find that (2. 32) reduces to
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m=2
= 2

a=N'

a=N’-1

I-AaDN’-z-api]a’ (2°34)

where we have used the fact that

m=2 -2
YT yew=0.
a=N' o’ =N’

a=N'=-1 @'=N"-1

Finally, combining (2.31) and (2. 34), we have

-2
E [AaDN' -2 a:p i]a = 09
a=1
a=0

which implies, upon use of (2.14) and (2.1), Eq. (2.29),
where D,, is some real diagonal matrix,

2=

Setting A" =1 in (2.25), we have the statement that,
in addition to (2.22), there exists a set of real diagonal
nX#n matrices D_, such that

m=2
o=l y Oy cooy
=0 (2. 35)

Thus, Egs. (2.11), together with (2.1), imply (2.22)
and (2.35). [(2.13) and (2. 24), which are more general
than (2.22) and (2. 35), will be utilized in a subsequent
paper.

Equations (2, 22) and (2. 35) furnish, in a recursive
fashion, expressions for the m real diagonal matrices
D, in terms of the A’s. Indeed, setting 8=m —3 in
(2. 22b) and using (2.22a), then setting B=m ~5 in
(2.22b) and using the previous equations, etc., we ob-
tain

iD, ==A__,

iD, =A, =4, LA 1,

iD, s=A, s—A, A a~A LA +A A .
The generalization is, clearly,

iDm-pzAm-p+ 2;(_)h*lAm-plAM'P2e o0 A
g
»

m
=1 ,

where of is the empty set and o} for p>1 is the set of all
ordered decompositions of p into positive integer sum-
mands (i.e., p=p +p, +++++p,) such that py, ps,...,
pw1 aTe even integers and p, is an odd integer, [Evi-
dently the right side of (2. 36) contains altogether
21/26-1) terms, ] Next, setting 8=2 in (2.35) and using
(2. 36) as well as the fact that placing an even number

g on the left of an ordered list of summands of p (from
o}) produces an element of the set a,,, We obtain

m=py 3

”E{ 1,3, (2. 36)

+p?

, R m+2
tDm »= UE(—)" 1Am-PlA’"'1’2o ’ <7A'"'l’)|’ P=m +1’ 2.37)
4

where o, is that subset of o], which consists of summands
no larger than m, i.e., p, <m. Setting B=%in (2. 35)
and using (2. 36) and (2. 37), we obtain (2. 37) except that
now p="*t Continuing in this manner, we observe

m+3°

that (2. 37) is valid for all p such that

m+l, m+3,..., (2.38)
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Finally, defining
1 b
T(m - P) = {0,

and noting that o} may be replaced by o, in (2. 36), we
can combine (2.36) and (2, 37) with (2. 38) into a single
expression and so obtain

iD_ _,=7m=-p)A,_ ,+2o(=-""A _, A

p<m,
p>m,

m=py m-pzu ) uAm-Pk’

4
pe{l, 3,..., 2m -1}, (2.39)

[1t is not difficult to verify directly that (2. 39) solves
(2.22) and (2.35).] Thus, when (1.13) holds, the 4’s
must be such that the m expressions given by the right
side of (2.39) are diagonal (and purely imaginary).

3. STRUCTURE OF S, WHEN m </

Let us write (2. 35) as a matrix equation

d+@ :0, (3. 1)
where we have defined
a:(A1A3'°'Am_2), (3.2)
oz
dZ(D-zD-«;"”D-(m-L): (3.3)
-1 -3
and
m=3 m'SDm-7D °
mel m=3 m-5
DD goeernce (3.4)
m=3 m=-5 .
=

s evsensoss Do (g =3)

A necessary and sufficient condition for (3.1) to have a
solution is®

a0 -1)=0, (3.5)

where /)* is the (Moore —Penrose) generalized inverse
of /), in which case the general solution is

a=e+cl1D0%], (3.6)
where we have defined
e=-d)* (3.7
and where
{3.8)

c={C,Cs70-C, )
0 2

is a real but otherwise arbitrary matrix partioned, in
analogy with (3.2), into nX#n blocks C;,...,C__,. Let
us similarly partition e in (3, 7): °

e=(E\Eq+-E__,). (3.9)
o 2
Next, note that, as indicated explicitly in (3.4), /) con-
sists entirely of diagonal »X# blocks, and thus, so
does /)*., (This latter statement may be easily verified
by noting that /) is real and symmetric and hence,
according to a result of Decell® based on the application
of the Cayley —Hamilton theorem to )%, /)* is expres-
sible as a polynomial in /) with numerical coefficients.)
Thus, from (3. 3) and (3.7) it follows that the nXx#n
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blocks E,...E__, in (3.9) are each diagonal. Also,

0
from (3.5) and (3.7) we see that Eq. (3.1) with a re-
placed by e is valid, or, reverting to the notation of
(2.35),

m=3,

(3.10)
In analogy with (2.22) we then define the diagonal nxn
matrices Ey, E;, ..., E_ ; In terms of the »X» blocks in
3.9py t @

2, 4,
D_B+'§‘Eapm wp=0, Be {1 g m-1y,
_1 Yooy
a_

E, a=4, ., (8.11a)
m=-2
EB:i(DB+ b EaDm-»B-oc)’
a=f+1
0, 2,.
Be 1, 3, m—3 , m=3, (3.11b)

(In other words, the E’s satisfy precisely the same
equations as the A’s; however, the E’s are diagonal
whereas the A’s, due to ¢ in (3.86), in general, are not
diagonal.) Finally, in analogy with (1.10) and (1,12)
we define the diagonal matrix polynomial in K,

ME)= LEK, E =1, (3.12)

i=0
where the sum extends over both odd and even integers,

We now show that

W=0, (3.13)
where W is defined as
W = NK)M(=K)=N(=K)M(K). (3.14)

Equation (3.13) is established by a procedure which
closely parallels that immediately following (2. 3).
Substituting (1.10) and (3,12) in (3. 14), we obtain

m+a-1
+

W= 2 2 Qg pak5 (3.15)

=

&
) 3
[N
QQ

R
u
I
w
R

where
Qo s=AgEy=AE, (3.16)

Interchanging the order of summation in (3.15) and
defining, in a manner analogous to (2.8),

~ m =2
ol A Be{l, s 22,
ga= (3.17)
~ m, m+2,”g,
a:l?.:i,,,.,n Pa,8-a Bc{m 1, m+8, .. 2" 1}
a=f=m
we Obtain
2m~1
W= 2, gK- (3.18)
B=1
Cur aim is now to show that
2,=90, {1, 3,..., 2m -1}, (8.19)

and hence, by (3.18), W=0, Equation (3.17) can be
rewritten, in a manner analogous to that used to obtain
the left sides of (2.11),
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8
-~ 8-1 . m_z
Ee=s azjlg“"s"’" ‘“{1’ Breees m—l}’ (3.20a)
=0
5 IR 0,2,...,
Sgem=2% Ls o, Bem=-a Be 1.3 m =1 , (3:,2010)
a=zf+1 [AS

where the plus and minus signs refer to the cases m odd
and m even, respectively. Let us consider (3.20b)
first. From (1,12), (3.12), (3.11a), and (3.16), we see
that (3, 20b) may be written [the term in (3.21) contain-
ing the summation is to be omitted if 8=m —1 or m 3]

EB+].)Dm-1 + %2

a=08+3

iéﬁfm:(Es—AB)+i(AB+l— B+rm=-o?

(3.21)

which, upon insertion of (2.22b) and (3. 11b), readily
reduces to
m -1 },

Boem="0, 5C{1 3,
where we have made use of the fact that

"_jiznizﬁb

oo’
a=8+3 a'=B+m~a+l

(3.22)

»=0.

2m+B-a-

Now consider (3. 20a),
Then (3.20a) becomes

First, let B=m -1 (m even),

m=2 .
Epar1 =% 2R

o=
which, upon insertion of (2,22b) and (3.11b) and sub-
sequent use of (2.35) and (3. 10) with 8=1, yields

e, meq=17

Zpa=0, (3.23)
where we have used the fact that
-2 m=2
E Qaa'Dzm-a-a'—lzo'

«=2 af=xm=-a
Returning to (3.20a) and assuming 8#m =1, we have,
upon use of (2.22b) and (3.11b), as well as a subsequent
interchange in order of integration,

B 8
E m=-2 B=1
ngﬂq(A -E)D,. a+ E EQM, e amats
=1 =B+2 o =1
g=o =R+1 =0

. Y
56{1, 3,..0,::_3 } (3.24)

where we have used the fact that

~
g-1 B=1 —
E Z Qaa'Dm+B-a-a'_0°
@'=l o =B-a’+l

of =0

Finally, using (2.35) and (3,10) to eliminate the second
summation in the last term in (3.24) and making use of
the fact that Q g=~ QB «» We obtain, after a second
use of (2. 35) a.nd (3.10) with -8 replaced by B-m,

-2
m=3) .
Equations (3.25), (3.23), and (3.22) are equivalent to
(3.19) which in turn implies, via (3.18), (3,13).

-~

g3:09 (3;25)

56{1, 3,050,

In order to demonstrate that under assumption (1,13)
S is diagonal, all that remains is to insert (1.8) in (1,1)
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and make use of (3.14) and (3. 13) to eliminate N(-K)
and thus obtain

S=K~ D Q(-Ky MM (KIM(-K)QIK)K™/? . (3.26)

[Since K, Q(K), and M(K) are diagonal, so are S and
S

40

4, SUMMARY AND CONCLUSION

Suppose the A’s in (1.10) are given, and they satisfy
(2.1). Then the conditions (1.3), (1.5), (1.7) which to-
gether imply that for real energies S, is unitary also im-
ply, under assumption (1.13), that there exist m real
diagonal matrices D which are related to the A’s by
(2. 22) and (2. 35) and which can be computed from
(2.39). However, (2.35) has a solution (for some of the
A’s) only under assumption (3.5). When it has a solu-
tion, there exists a diagonal polynomial M{K)} such that
N(K)M(-K) is an even function of K. This has the con-
sequence that e(X) is factorable into the factors K7, a

J. Math. Phys., Vol. 16, No. 7, July 1975

function of K2 (not necessarily diagonal), and a diagonal
function of K, and hence, by (1.1), leads always to a
diagonal S and S,. As an alternative to taking the A’s

as given, one could take as given the m real diagonal
matrices D, subject to (3.5). Then, (3.2) and (3.6)—
(3.9) furnish the A’s. Of course, the conclusion that

S, must be diagonal for m <! is unchanged. The coupled
cases of (1,8) with m > will be discussed in a future
work,
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We show here the possibility of finding a unique Lie group G associated with each connected Lie group G such
that every projective unitary representation of G can be lifted to a unitary representation of G, that is to say,
all PUR of G can be found from the UR of only one group G. This method is applied to the research of PUR

of the Galilei group and compared with the preceding ones.

PACS numbers: 02.20.Q

1. INTRODUCTION

This paper is devoted to the study of the (continuous)
projective unitary representations (hereafter PUR) of
a connected Lie group. We are not going to analyze the
fundamental role played by the PUR of the symmetry
group of a quantum theory in the Hilbert space formula-
tion, because it is well known. We only attempt to
study the relations between the PUR of a connected Lie
group G and the (continuous) unitary representations
(UR) of other Lie groups related with G. Schur! has
shown that any PUR of a finite group G can be lifted to
a UR of another group G, univocally associated with G.
In this paper we show that the same result holds when
G is a connected Lie group.

The plan of this work is intended as follows: Section 2
is devoted to a brief review of Bargmann’s method used
up to today to find the PUR of a connected Lie group.

In Sec. 3 a new method of finding the PUR of a connected
Lie group from the UR of another connected Lie group

G is developed. We call this group G related with G the
“projective covering group” of G. In order to prevent
some misunderstandings, two appendices containing the
definitions which we are using are added at the end of
this paper. In Sec. 4 we consider the application of the
new method to two fundamental groups in physics: the
connected Poincaré / and Galilei g groups. In the first
case the projective covering group and the universal
covering group coincide and every PUR of /? can be
lifted to a UR of P*~(T7,0SL(2, C)) as is well known from
the Wigner’s work.” But not all the PUR of § can be
lifted to UR of § *, and this fact is also known.®™® The
study of the PUR of (/ can be found, e.g., in the review
of Lévy-Léblond.® The last section is devoted to clarify
the relation between the method proposed by us and the
ones used by Lévy-Léblond® and Varadarajan,” which are
based on Bargmann’s® and Mackey’s® works when they
are applied to the Galilei group.

2. THE REDUCTION TO UNITARY
REPRESENTATIONS

Because of the definition (see Appendix A, Def. Al)
of PU (/) as the factor group U(#)/U(1), it follows that
1— U(1)— U(H)—~ PU(H)~1 is a central extension of
PU(#) by U(1), Bargmann’s method of making up all the
PUR, 7, of a connected Lie group G can be stated in the
following recipe which can be justified by means of the
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lifting homomorphism A, ,, although neither U(H) nor
PU(H) are itself Lie groups:

(i) Determine the universal covering group G* of G.
By p: G*—~ G we will denote the convering homomorphism.

(ii) Determine all (equivalence classes of) central
extensions of G* by U(1),

(iii) Determine all UR of the middle group correspond-
ing to each extension g: 1~ U(1l)— Y G*—~ 1 and select
those which are reduced on U(1) to the identify map.
Every one gives rise to a PUR of G*,

(iv) Among these representations, pick out only those
where the subgroup m™ (Kerp) of Y is mapped on U(1).
This condition suffices to assure that we will obtain not
only a PUR of G*, but one of G itself.

The preceding method can be pictured in the following
commutative diagram:

Y:1-U@Q)~ ¥ - G*—1

\G
/

1- U)~ U(H)~ PUH)~ 1

T*

2.1y

We must remark that the use of the universal covering
group G* is simply of technical character. In fact we
can also obtain all PUR of G from certain UR [step
(iii)} of the middle group of each extension X ¢ Ext,
1G, U(L).

X:l-u)y—- X - G =1

H | | . 2.2)

1—-U()~ U(H)—- PUH) -1

Even this procedure has the advantage of making steps
(i) and (iv) unnecessary, Ext,(G, U(1)) is generally, and
roughly speaking, greater than Ext,(G*, U(1)), and then
we have much more extensions to find the PUR of G.

We can summarize all the previous results as follows:
Any PUR of a connected Lie group G can be lifted to an
UR of some central extension of G* (or G) by U(1), But,
generally there exist several (inequivalent) extensions,
and therefore this solution to the problem cannot be
considered as a canonical one,
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3. THE “PROJECTIVE COVERING GROUP” OF A
CONNECTED LIE GROUP

Now we shall develop a new method for studying the
PUR of a connected Lie group G by making use of a
theorem by Hochschild, which analyzes the possibility
of a choice of a connected Lie group M and an epimor-
phism w: M- G in such a way that any extension of G
by A (connected Abelian Lie group) is lifted by Ay, tO
the trivial extension.

Theorem 3.1 (Hochschild®): Let A, G, be connected
Lie groups A being Abelian. Then, there exists a
connected and simply connected Lie group M and a con-
tinuous epimorphism w: M — G such that Ker A,
= Exty(G, A). ’

This theorem is really a particular case of a result
due to Hochschild,'® and its proof is not reproduced
here. We will only show the characterization of the Lie
group M by means of its Lie algebra. Let LG, LA be
the Lie algebras corresponding to G and A respectively,
and let H3(LG, LA) be the second cohomology group of
LG and LA relative to the trivial action of LG on LA.

It is well known that H?,(LG, LA) is also a real finite-
dimensional vector space. Let n be the dimension of
H%(LG, LA) and let &,,..., £, be a set of representa-
tives in Z2(LG, LA) for a basis of H?,(LG, LA). We
define a Lie algebra structure LM as follows: The
subjacent vector space of LM is a direct sum.

LM = LAmHYLG, LA 031G

of LG and » copies of LA. The product law (commuta-
tion relations) in LM is given by

Hay, oo osan @)y (bryooeyb,,h)]
= (&, (g 1), . .., £,(g, ), Lg, kD)
where
Qyoees@ybyyco., b,cLA and g,hcLG.

Now let M be the only connected and simply connected
Lie group with Lie algebra LM, The homorphism 7:
LM - LG defined by 7: (a;+*+a,, g)—~ g induces an epi-
morphism w: M— G such that @ =7. This group M and
the “covering” homomorphism w satisfy the announced
properties in the Theorem 3.1.

The application of this theorem to the problem which
we are considering is an easy matter: Every PUR, 7,
of the connected Lie group G can be lifted to a UR, 7,
of the middle group of some central extension
XeExty (G, U(1)) [see diagram (2.2)]. Both groups G
and U(1) in the extension X verify the conditions of
Theorem 3.1 which can be used. Hence, there exists
a Lie group G and a continuous epimorphism p: G— G
such that Ker Ag ,=Ext,(G, U(1)). This fact can be
pictured by the following commutative diagram.

1—U1)—UQ)®6— G —1
I | Jo

X:1—Ul)— X G 1
i |7 N

1—UQ1)— U(#) PU(fy—1
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Therefore, each PUR, 7, of G induces a PUR, 7op,
of G, and this last PUR can always be lifted to a UR of
U(1)® G which on U(1) is reduced to the identity, that is
to say, we obtain a UR of G. Conversely, let Rbe a UR
of G and let 1® R be the UR of U(1)®G defined by 1% R:
(n, 2 —2R(g). Clearly I1®R induces a PUR, 7%, of
G:

1— U(1)y— U(1)® G— G .
” I®Rl R lr\ G

t—UQ)— U(H)——PU(#)—1

1

But with T is associated a PUR T of G such that 7
=rop if and only if Ker7C Kerp.!! This means that
R induces a PUR of G if and only if R (Kerp)cC U(1).

We shall call G the projective covering group of G,
due to the fundamental role played by G in this problem.
The name is justified, because, in the simplest cases,
in which H2(LG,IR)=0, then G coincides with the uni-
versal covering group.

We must remember that the subjacent vectorial space
of the Lie algebra LG of G is a direct sum IR#mHG(LG, B
@ LG and the commutation relations? are [(6,,...,6,,2),
(E1yees 8oy WI=(&(g,R), ..., &,(z,h),lg, ), where
O1ycoasblyyeees E,€R g, ke LG, and £&,...£, are a
set of representatives in Z3(LG, IR) for a basis of
H2(LG, IR). Then the group G is defined as being the only
connected and simply connected Lie group with Lie
algebra LG. Furthermore, the covering homomorphism
p: G— G is induced by the projection LG — LG defined
by (91, e nyen, g)—’ &

Then, each connected Lie group G admits a well-
defined “projective covering group” G, and we can
summarize all the preceding results in the following
theorem.

Theorem 3.2'3%: Let G be any connected Lie group and
G the corresponding “projective covering group,” and
let p: G- G be the covering homomorphism. Then,
each PUR, 7, of G can be lifted to a UR, R of G. Con-
versely, each UR, R, of G mapping into U(1) the kernel
of p induces a PUR of G

This theorem can be visualized by the following
commutative diagram.

?

1— Kerp— G G ——1
| I

1I—UQ)— U(H{)—PU(H)—1

(3.1)

Following the method here developed, the determina-
tion of all PUR of G consists of:

(a) Determine the group G and the homomorphism
p: G- G,

{b) Pick out, among all UR of G, those mapping Kerp
in U(1). Each one gives rise to a PUR of G, according
to diagram (3.1). All PUR of G are obtained in this way.
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The procedure we are proposing is, over all, con-
ceptually easier than the proceding ones. In fact, only
a group G is necessary to find by means of its UR, all
the PUR of G. Then, we must find only the UR of G and
afterwards, pick out the suitable ones following (b).
When HZ(LG, R)=0, it is obviously G = G* and then
every PUR of G can be lifted to a UR of G*, and con-
versely, each UR of G* mapping Kerp in U(1) gives rise
to a PUR of G. This result, which is only a corollary
of theorem 3.2, is explicitly contained in Bargmann’s
paper and is well known.

4. APPLICATIONS

The simplest case corresponds to a connected Lie
group G such that H3(LG, R) =0 [or, equivalently,
H2(G*,R) =0 or also H3(G*, U(1))=0]. This is the case
for the tridimensional rotation group SO(3), the Poin-
caré group / (identity component only), etc,'* As in-
dicated at the end of Sec. 3, Theorem 3.2 leads in such
cases to the result that any PUR of G can be lifted to
a UR of G* because then G=G*, This result is well
known, and we do not comment on it here,

A second example, which we will study more closely,
is the Galilei group , where the simplest relation
HYLG, R)=0 does not hold, Let § be the connected
Galilei group, that is to say, the group of all linear
transformations of IR* of the form

(b,a,v,R): (r,)— (Rr+vi+a,t+Dd), 4.1)

where R is a 3X3 real orthogonal matrix with detR=+1,

Our notations ong agree with those of thework of Lévy-
Léblond.*®

The first step to the determination of all PUR of (; is
the research of the group g It is well known that

HY(L( , R) has dimension one®® and a representative in
Z3(L; , R) for a basis of HY(L(, R) is the “cocycle”
Z give by =(K;, P,;)=5,,M. the values of = being zero
for another pairs of generators (we use the standard
choice of the basis'® in L;). Here M is any fixed ele-
ment of IR, which we take as the new generator of the
algebra L(. The commutation relations in L{ are
given by

I-J J]] ”ka, [K,,H]:
Lo, &, =¢, K, |K,P]l=5M,
[,y P I=€ ;P (4.2)

and all other commutators vanish,

The transition from the algebra Lg to the groupg is
done by “integrating” the former commutation relations.
The set of the grOupg: is R X( *, and the group law is
given by

(6, ), =8+t + wlg,h), gh), 4.3)

where 6, ¢ IR and g, h€( * and where w:§ *x( *—~ R is
the factor system of the universal covering group of the
Galilei group given by

wlg, &) =3bv'2 +v+Ra, (4.4)

where g&( * has been taken in the form (b,a,v, R) the
only difference with an element of g being the replace~
ment of R SO(3) by Re SU(2) [the group SU(2) acts on
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IR® via the covering homomorphism SU(2) — SG(3)].
relation (4.3) shows that(; is a central, not trivial,
extension of G * by R.

The

Fortunately, this group(; is itself a semidirect
product and its irreducible UR can be easily charac-
terized by means of Mackey’s theorem.'’:!* In fact, the
elements (0; b, a, 0, 1) form an Abelian normal sub-
group N of g the group K of homogeneous Galilei trans-
formations (0; 0, 0, v, R) acts on N as follows:

(v, R): (6; b, a)—~ (6 + Lbv®+v+Ra, b, Ra+bv). (4.5)

This law gives the semidirect structure of (; . The
group N being isomorphic to IR®, its dual group N is
also isomorphic to IR?; let us denote its elements by
(m, E, p). The group K acts on N as follows:

(v, R): (m, E, )~ (m, E+V+Rp+ smv?, Rp +mv).
(4.6)

The orbits under this action can be easily found. The
function (m, E, p)— 2mE —p? is invariant under the
action (4.6). Take p=2mE —p?. The orbits are given
by

Zm,,,:{(ﬂ’I, E, p)l2mE—p2:p},
Zo,u:{(o’ E, P)l—p
Zo0,.=100, E, O)},

m, pc R, m#0

*=p}, peR, p<O, .7

E-R.

Looking at this orbit structure of N, it is easy to
conclude that( is a regular semidirect product, and,
then, all its irreducible UR are obtained from the Mac-
key method. As( is of “type I,”* then all UR are
direct sums (mtegral) of 1rreduc1ble UR. The litile
groups of each orbit (4.7) are easily calculated and
finally, all irreducible UR of (; are classified in five
‘types” and labeled in the following form:

1. im, p, jl, m peR, 2jcz, =0, mz0
I p, &), peR, 2tcZ, p<O;
Im: lp, 7, €], p, ¥¢R, ¢=x1, p<0, »r>0
v: |E, j]l, EcR, 2jcZz, j=0 (4.8)
v: |E, », &], E, vc¢R, 2tc¢Z, r>0,

According to Theorem 3,2, it turns out that the irre-
ducible PUR of (; are induced by those (4,8) mapping
onto U(1) the kernel of the covering homorphism. But
Kerp is contained in the center of (; and Schur’s lemma
shows that any irreducible UR of  applies Kerp on Uy,
This last step {b) introduces no further restrictions.
Then, the irreducible PUR of { are also given by (4.8).

One point remains to be studied: the possible equiva-
lence (in a projective sense) of these representations.
It turns out that PUR of class II-V with different labels
are projectively inequivalent and that the PUR of class 1
with the same [m,j] but different p’s are projectively
equivalent,*®

5. DISCUSSION: {GALILEI GROUP)

Although original works on PUR of the Galilei group
are neither by Varadarajan® nor Lévy-Léblond,® we will
compare the methods given in these references with the
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one we are proposing in order to show clearly and
sharply the fundamental difference between both,

The method used by Varadarajan” is essentially the
one given in (2.1), where the identity automorphism of
U(1) has been replaced by the complex conjugation
X—2a*=2"'_ The difference is only of a technical
character and leads to the consequence that from all UR
of the middle group of each extension X¢ Exto(g * U(1))
we must choose only those reducing on U(1) to A — 272,
The remainder of the procedure is formally analogous
to the one given in Sec. 4, although m is not a real
number but an entier [because U(1)=%Z], The UR mapp-
ing X on A! are precisely the ones corresponding to the
orbits with m = -1, Although the (real) label m seems
not to appear in this method, it is, really, parametriz-
ing the set Extq (G *, U(1)). Then as in the case of
Sec. 4 the last step (iv) introduces no further restric-
tions for irreducible UR, Attention is called to the fact
that this method involves first a “multiplicative” step
(ii) (we must consider the UR of many groups) and,
after, another “restrictive” step (iii) (select only some
UR of each group) which are unnecessary in the method
given in the former section.

The method given by Lévy-Léblond is similar to
Varadarajan’s, but he considers the extensions of G *
by IR. The set H2 3G *, TR) is one dimensional and 1t is
parametrized by mc IR, A peculiar fact is that there is
an infinite set of inequivalent extensions (called by
Lévy-Léblond® G ), but its middle groups are only two
(up to an isomorphism): the direct product R®( * cor-
responding to » =0 and another group called the “ex-
tended Poincaré group, ” and denoted by g; for m#0
gm :g~ From the middle group of each extension labelled
by m < IR we obtain many more “candidates” to PUR of

(; than the true ones, A condition similar to (ii1) of Sec.
2 is necessary here, and because of the use of IR and

not of U(1) in the extensions, this condition must be some- °

what different to (iii) and it is also translated by select-
ing those UR of each middle group whose corresponding
character of the phase subgroup R is wm =1, One must
continue as in Varadarajan’s method and the absence of
m (when it is compared with the method of Sec. 4) is
due to the multiplicity of groups (labelled by m < IR)
which are needed.

The most peculiar feature is that the “projective
covering group” g of (j is isomorphic to the “extended
Galilei group” (( in the Levy-Léblond’s notation), All
PUR of § can be found from the UR of G (only one
group !!!) and therefore of g while not only g
but a setg with m#0, m < IR, and also o= IRB (¥
are needed for the construction of all PUR of (; in his
method. The apparent contradiction is easily clarified
by considering that in Lévy-Léblond’s method (and also
in Bargmann’s) a condition (iii) or similar is necessary
to assure the existence of a induced projective repre-
sentation. This condition says: “Pick out from all UR
of the middle group of each extension only those mapping
the phase subgroup [IR or U(1)] in a prescribed manner
on U{H).” This condition is the one compelling us to
take m =1 (7 in the Lévy-Léblond paper) and not the
fact that “nature chooses a unique and universal value. »?°
In the method developed by us no restrictive conditions
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appear and the two “multiplicative” and “restrictive”
steps are unnecessary, so that this method must be
considered simpler than ones preceding.

APPENDIX A: PROJECTIVE UNITARY
REPRESENTATIONS

Let U(#) be the unitary group of the Hilbert space //
endowed with the usual topology. The group U(1) is
embedded in U(4) as an invariant subgroup.

Definition A-1: We call projective unitary group
PU(#) to the factor group U(#)/U(1). It can be endowed
with the quotient topology relative to the canonical sur-
jection,

Now, let G be a connected Lie group.

Definition A-2: A unitary representation of G is a
continuous homomorphism G~ U(4).

Definition A-3: A projective unitary representation
of G is a continuous homomorphism G— PU().

We must remark that each quantum theory having G
as symetry group determines an homomorphism of G in
the group Aut(#) of automorphisms of the lattice / (#)
of all subspaces of a Hilbert space /. According to a
well-known theorem of Wigner’s, if dim//= 2, Auty) is
isomorphic to the projective semiunitary group of 4/,
PTU(H), but if G is a connected Lie group, the image
of G under a continuous mapping lies in the connected
component containing the identity, and so the elimina-
tion from the beginning of the antiunitary ray transfor-
mations is not a very restrictive condition when we are
considering only connected symetry groups.

A possible relation between PUR and UR can be ob-
tained by lifting: If E is a connected Lie group, p:
E— G a continuous homomorphism, 7a PURof G and T
a UR of E, we will say that T is a lifting of 7 if and only
if the following diagram is commutative.

1— Kerp—— E G 1
I |
I— V)~ U(H)— PU(})—

We shall also say that 7 can be lifted to a UR of E,
This definition of lifting of a PUR to a UR is closely
related to the lifting of extensions to be defined in the
next appendix.

For PUR, the concepts of irreducibility and equiva-
lence are defined in the usual way [there no_exists a
G-invariant proper projective subspace of // (projective
space associated with /4/), and there exists an element
of PU(#) intertwining the two representations| We only
must call attention to the fact that, while any lifting of
an irreducible PUR is also irreducible as UR, two
liftings of the same (or equivalent) PUR can be inequiva-
lent. Roughly speaking, irreducibility is not changed by
passing from UR to PUR, while equivalences are some-
what weakened.

APPENDIX B: GROUP EXTENSIONS AND
LIFTING OF EXTENSIONS

As in the first appendix we will only give some defini-
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tions and results. The reader interested in it may
find systematic treatments in Refs. 21, 22,

Let G and A be Lie groups, A being Abelian.

Definition B-1: We call central extension of G by 4 an
exact sequence of Lie groups:

i
g1-atEl G,

where i and p denote continuous homomorphisms and
i(A) is contained in the center of E.

We remark that we do not call central extension of G
by A to the group E itself because this terminology may
be misleading. We call E the “middle group” of the
extension £. Now, we can define an equivalence relation
in the set of all central extensions of G by A and the
factor set, denoted Exty(G, A) may be endowed with an
Abelian group structure by means of the Baer composi-
tion law.? Then, this group can be seen to be iso-
morphic to the second cohomology group HE(G, A) cor-
responding to the trivial action of Gon A,

It is also well known that HZ(G, A) is a contravariant
functor in the first factor G, that is to say, that every
homomorphism p: G’ —G defines an homomorphism
Ag,t HY(G, A)— HE(G’, A), and therefore another homo-
morphism named by the same symbol A, : Exty(G, 4)
— Ext,(G’, A). The extension £’ c Exty(G’, A) associated
with £ e Ext,(G, A) is called the lifted extension of £ by
means of p, The explicit way to building up this new
extension can be found in the Hochschild paper.® The
two extensions are related by the following commutative
diagram.

Ag (8):1=A—~F—~ G ~1
I+ ¥p
t:l1-ALE~G-1

For Lie algebras analogous definitions can be esta-
blished. So, we introduce the concepts of Lie algebra
extension, and the corresponding equivalence relation.
The set Ext,(LG, LA) of (equivalence classes of) central
extensions of LG by LA may also be endowed with an
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Abelian group structure, and so it is isomorphic to
HY(LG, LA).*

The groups Z3(LG, LA) and B%(LG, LA) of “cocyles”
and “coboundaries” are related to H3(LG, LA) as in the
group case in such a way that H3(LG, LA)=Z%(LG, LA)/
BI(LG, LA).

*In part from the Tesina de Licenciatura Ref, 13),

11, Schur, J. Reine Angew. Math. 127, 20 (1904); 132, 85
(1907).
2k, P. Wigner, Ann. Math, 40, 149 (1939).

%y, Bargmann, Ann, Math. 59, 1 (1954).

%v.S. Varadarajan, Geometry of Quantum Theory Vol. II
(Van Nostrand, Princeton, N,J., 1970).

55, M., Lévy-Léblond, “Galilei group and Galilean invariance,”
in Group Theory and Its Applications, Vol. II, edited by
E.M, Loebl (Academic, New York, 1971).

See Ref. 5, p. 251.

"See Ref. 4, p. 111, Theor. 10.16 and Chap. XII, Sec. 8.
8G.W. Mackey, Acta Math. 99, 265 (1958).

%G. Hochschild, Ann. Math. 54, 96 (1951).

10g0e Ref. 9, p. 101, Theor. 2.1.

11, Michel, Invariance in Quantum Mechanics and Gvoup
Extensions, Istambul Lectures (Gordon and Breach, New
York, 1964), p, 157, Lemma 3.

2%We must remark that in Ref, 10 there is an errata concern-
ing these commutation relations.

13M. Santander, Tesina de Licenciatura: Extensiones de
Grupos y Simetrias en Mecdnica Cuantica, Universidad de
Madrid, 1974,

Y3¢e, e.g., K.R. Parthasarathy, Multipliers on Locally
Compact Groups, Lecture Notes in Math., Vol. 93
(Springer, New York, 1969),

15%see Ref. 5, p. 239,

6gee Ref. 5, p. 232.

1D, J, Simms, Lie Groups and Quantum Mechanics, Lecture
Notes in Math,, Vol. 52 (Springer, New York, 1968},

18G, W, Mackey, Bull, Am, Math. Soc. 69, 628 (1963).

1¥gee Ref. 5, p. 252.

%gee Ref, 5, p. 273.

g, Maclane, Homology (Springer, New York, 1963).

221, Michel, Relativistic Invariance and Intevnal Symmetries,
Brandeis Lectures 1965, (Gordon and Breach, New York,
1966); see also Ref. 11.

Bgee Ref. 9, Sec. 1.

Ygee, e.g., Ref. 9, Sec. 2; also Ref, 4, Chap, X,

Sec. 4.
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The asymptotic solution of the neutron transport equation is obtained for large near-critical domains D which
possess a cellular, nearly periodic structure. A typical mean free path in D is taken to be of the same order
of magnitude as a cell diameter, and these are taken to be small (of order €) compared to a typical diameter
of D. The solution is asymptotic with respect to the small parameter e. It is a product of two functions, one
determined by a detailed cell calculation and the other obtained as the solution of a time dependent diffusion
equation. The diffusion equation contains precursor (delayed neutron) densities, equations for which are
derived. The coefficients in the diffusion equation, which are determined using the results of the cell
calculation, differ from those now used in engineering applications. The initial condition for the diffusion
equation is derived, and the problem of determining the boundary condition is discussed.

INTRODUCTION

Recently, the solution of general neutron transport
problems has been obtained for domains D which are
large compared to a mean free path, and in which the
material properties vary slowly with respect to a mean
free path and all secondary neutrons are “prompt,”*~%
The solutions are asymptotic with respect to a small
dimensionless parameter €, defined as the ratio of a
typical mean free path to a typical dimension of D. For
near-critical domains, a diffusion equation with initial
and boundary conditions is derived which describes the
neutron density ¥ several mean free paths away from
the boundaries of D, and several collisions after the ini-
tial time.

In most reactor cores, however, inhomogeneities in
space do not occur “slowly” with respect to a mean
free path, and not all secondary neutrons are prompt.

A reactor core typically consists of a large periodic
array of identical hexagonal or rectangular cells, each
cell being only a few mean free paths thick; within each
cell the material properties undergo large discontinui-
ties, for instance in passing from a fuel rod to the mod-
erator, In addition, the ratio of delayed to prompt neu-
trons is small (typically about 1%), but for near-critical
domains these delayed neutrons can have a large effect
on the neutron density.® For such cases, delayed neu-
trons cannot be realistically ignored.

To account for these effects we shall consider in this
paper a near-critical domain with delayed neutrons and
nearly periodic, rapidly varying spatial inhomogenei-
ties, and we shall generalize the asymptotic results
derived earlier to this case. In particular, we take D
to be a large domain consisting of comparatively small,
nearly identical cells, arranged periodically. We re-
quire a typical mean free path in D to be the same order
of magnitude as a cell diameter, and these to be small
(of order €) compared to a typical diameter of D. Also
we require the ratio of delayed to prompt secondary
neutrons to be small (of order €?).

The main result of this paper is that beyond several
mean {free paths away from the boundary of D and sev-
eral collison times after the initial time £'=0, the solu-
tion ¢ of the neutron transport equation is given by an
asymptotic “interior” solution ¢* of the form
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P =A(r, et o(r, €', v,et’) + O(e). (A)

In (A), ¢ is the solution of the single cell problem de-
scribed in Sec. 3 and A satisfies the diffusion equation
(3.16). If, to leading order, the cells comprising D are
identical and their material properties are independent
of time, then ¢ is independent of r and of €' and is pe-
riodic in €'r across each cell. For this case, (A) shows
that the velocity dependence and the periodic fast spatial
dependence of ¥' are contained in ¢, and are separated
from and modulated by the slow time and slow spatial
dependence contained in A;. (This specific case will be
described in detail in Sec. 1.) I the material properties
of D have no time and fast spatial variation and if there
are no delayed neutrons, then the problem for ¢ and the
diffusion equation for 4, simplify to those described in
Ref. 3.)

It is hoped that the methods in this paper, which as
in Ref. 3 are easily specialized to multigroup or one-
speed neutron transport, will be useful in solving real-
istic reactor core problems. Diffusion equations simi-
lar to ours have been proposed as approximate govern-
ing equations for reactor cores,® and are in common
use in many computer codes. However, our equations
are derived directly from the neutron transport equa-
tion, our method systematically yields the correction
terms of order € and higher, and our diffusion coeffi-
cients are different from those previously proposed. In
addition, our method of derivation takes into account
the rapid spatial variation in a cell and gives directly
the effective diffusion coefficients, “homogenized”
across a cell. In other methods, the effective homo-
genized coefficients are arrived at heuristically.”® We
shall numerically compare our diffusion coefficients to
others in common use in a second paper.®

The plan of this paper is as follows. Section 1is a
detailed summary of the results of this paper for the
case of a domain D whose material properties are, to
O(e), periodic in space and independent of time. These
results are then derived for a more general domain D
in Secs. 2 through 7.

In Sec. 2 we completely formulate the general neutron
transport problem under consideration and state certain
assumptions we find necessary to impose on the cell
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structure, In Sec. 3 we derive the interior solution ¢
and the Egs. (3.16), (3.22) governing A4,. In Sec. 4 we
give some results about the coefficients in the diffusion
equation. In Sec. 5 we derive the initial conditions for
A, and the initial layer ¢° which describes the transition
from the initial condition to the interior or diffusion
solution described by ¢!, §° decays exponentially with
time after the initial time, the decay rate being fast of
order €. In Sec. 6 we discuss boundary conditions for
A,. In Sec, 7 we construct solutions of the asymptotic
equations (3.16), (3.22), and we discuss the critical
problem for D.

1. SUMMARY OF RESULTS

In this section we shall summarize our results for a
problem of practical interest. We consider a domain
D in which (a) the ratio of a typical mean free path to
a cell diameter is of order one, (b) the ratio of a typical
mean free path to a typical dimension of D is small of
order €, (c) the material properties of D are periodic
in space and independent of time except for a pertur-

-bation term of order 62, and (d) the interior sources
and delayed neutron terms are small of order €. Then
the neutron transport equation may be written in scaled
form as

19 1 SINC
<287+V'V—_€_LU—€LZ>$:€ - MGt €S, (1.1)
1 85 _ 6.7dv’' — en.C 1
3 Ci= € JOvavi—enty, (1.2)

where L and L, are “prompt” collision operators of the
form

L= [ v'osddv’ - vOopad, n=0,2. (1.3)
In (1.1)—(1.3), the space variable r is stretched so
that a typical dimension of D is of order 1, We introduce

the fast space variable r’=¢€"r, in terms of which a
typical cell diameter and mean free path are of order
one; we also introduce the slow time variable t= €T,
Then in (1.3) we express 05 and o5, as functions of
velocity and as periodic functions of r’ across a cell,
but we require os, and oy to be independent of £, 7, and
r. (Thus L, depends parametrically upon r’.) Also in
(1.3), we express og, and or; as functions of r, ¢, velo-
city, and as periodic functions of r’ across a cell, but
Wwe require s, and op, to be independent of 7. (Thus L,
depends parametrically upon r’, r, and ¢.)

Next, we require that the equation

0=To(r ,v)=(v- v’ — L} ,v) (1.4)

have a unique normalized solution ¢ which is positive
and periodic across a cell. [In (1.4), V' acts onr’.]

Under the above conditions (and in fact under more
general conditions described in Sec. 2), we derive the
following result in Sec. 3: As € -0, the solution 3 of
(1.1), (1.2) tends, away from the boundaries of D and
the initial time, to an “interior” solution ¥ of the form

¥ = Ay, Ho(etr,v) + 0(e), (1.5
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where A, satisfies the equations

04

==V Mo VA T MpAy+ T 0Q, + S, (1.6)
i

20.

g':BiAU_AiQiG 1.7

In (1.6) and (1.7), /iy and M, are defined by

Mo= [ | vo*Tpvdvadr’, (1.8)

Mz, t) = [ [ ¢*Lyo¢ dvdr’, (1.9)

where C denotes a cell and Q;, S;, and B, are certain
moments of C;, S, and 6; which are described in Sec. 3.

In Eq. (1.8), 7™ is the pseudo-inverse of T and ¢*
is the adjoint eigenfunction corresponding to (1.4).

Since ¢* and T-'¢v are functions only of r’ and v,
My is a constant matrix. However, since L, depends
parametrically upon r and ¢, M, is in general a function
of r and ¢.

For rectangular or hexagonal cylindrical cells pos-
sessing certain symmetries, we show in Sec. 4 that/,
is a diagonal matrix, provided the coordinate axes are
correctly oriented.

The initial condition for A  is derived in Sec. 5, along
with the initial layer solution of the transport equation,
which describes the transition from the initial state to
the “diffusion state” described by .

The problem to determine the boundary conditions for
Ay is discussed in Sec. 6. If D is surrounded by a vacu-
um or by a perfectly absorbing region, then it is asymp-
totically correct to take 4,=0 on the boundary of D.

If the domain D consists of a nearly homogeneous mat-
erial, then all quantities in the above equations are in-
dependent of the fast space variable r'. However, we
may still allow L, to depend parametrically upon r and
¢, toaccount for a small, slowly varying (in space and
time) perturbation from exact homogeneity.

For this case, the operator 7 in (1.4) reducesto T
=—L,, and we show in Sec. 4 that the eigenfunction ¢
must have the form

o=¢().

Then ' is given by (1.5) with ¢ of the form (1.10), and
again Egs. (1.6}—(1.9) apply; we also show in Sec. 4
that/l; is proportional to the identity matrix:

(1.10)

My=M 4.

Thus the second derivative operator in (1. 8) reduces
to the usual Laplacian operator.

The above paragraphs describe our results for the
given special domain D. In the remaining sections of
this paper, we shall derive the above results for more
general domains D. In these domains condition (¢), given
in the first paragraph of this section, is replaced by a
weaker and more general condition which is described in
Sec. 2.
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2. FORMULATION

We consider the neutron transport equation, expressed
in terms of scaled quantities by

10 1 ~
(_'éTr"’V V"_L) *P(r)v) T: €)

=2,e),Ci(r, v, 7, €) +€S(r, €'r, v, €7). 2.1

i
Here €S is the source and €"'L is the prompt collision
operator, defined by

- . ~ ’
Lij(r,v,7,€) = | v'oslr, €tr, v’ —v, €7, )Y(r, v', 7, €) dv

- vog(r, €'r, v, €7, )(r, v, T€). (2.2)

C~i is the precursor density of species ¢. For station-

ary fuel reactors, C; satisfies the o.d.e.

IBC

— Yo(r,v', 7, &) dv’

——i(r,v,T,€)=¢ [ 0,(r, 'r,v' ~v, 7

- exCilr, v, T, €). 2.3

For moving (fluid) fuel reactors, 5,. will satisfy a more
general equation than (2. 3). Our method can be used to
treat such a case, but we shall not do so here,

In the above equations, the scattering and total cross
sections are written as € og and €0, to indicate that
the mean free path is small of order €. The time vari-
able 7 is scaled so that the time to traverse one mean
free path is of order unity. 7 is defined in terms of un-
scaled time ¢’ by T=¢€"'. The decay constants and
source are written as €X; and €@ to indicate that they
are small,

In addition, the scaled source S and cross sections
os, or, 6; are written as functions of €*'r and €7 since
these functions have rapid spatial variations on the or-
der of a mean free path, and slow time variation with
respect to 7. To indicate that o5 and o, have Taylor ex-
pansions in their last variable, we write them as

o

23€"0g,(r, €tr, v ~v, € T) (2.4)
n=0

’ ?
os(r, elr, v/ -v’, %1, €) =

or(r, €tr, v, €7, €) =), €0y (r, €r, v, 7). (2.5)

n=0

We require the cells which comprise D to possess
certain symmetries. In particular, we require each
cell to have a center (say r=0) about which ¢s and o7
are to order € symmetric functions of position. We also
require og and or to be rotationally symmetric in v

and v/, to order €. Then, with r’ =¢™r and # =¢€?7,

os.ler’, ' v’ ~v,0)=0s,(-€x’, = 1, -V — =V, 1), n=0,1,
(2.6)

and

orgler’, v’ v, ) =op(~ €', =1’ 0,8, n=0,1, 2.7

Also, we require oz and o to be to leading order
periodic across each cell. We meet this condition by
requiring og, and oy, in (2. 86) and (2. 7) to be periodic in
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r' across each cell for € =0, Then if r' =0 is the center
of a given cell C and r’=a is the center of any other
cell, we have

r'e C,
(2.8)

0se(0, £/, v =V, ) = 050, v +a, v = v, 1),

and

r'ecC.
(2.9)

oro(0, v’y v, H=07,(0, v’ +a, v, 1),

Hereafter, any function of r' satisfying this condition
will be called peviodic.

To solve (2.1)—(2.5), we define the fast position vari-
able r’ by r'= €'r, and we express § and C; as functions
of rand r':

Wr,v, 7, €)=id(r,r’, v, 7, €),

6{(1‘, v, T, €) = Ci(r: I", v, T; €)°

Then v-Vy=(v-V+elv.V')y, where V and V' on the
right side of this equation act on r and r’, respectively.
If we define L, to be the operator in (2. 2) with o5 and
or replaced respectively by o, and o7,, and we replace
elr by r’ in (2.1)—{2.5), then the equations for ¥ and
C; become

(ﬁ"a—a+v V+ev.v - 2_16"'1L )¢
n=0

=€ (Zi)xici +S)

and

ac,_ ;
57 =€ <[9,~z/)dv nAiC,-)n

For the purposes of analysis, we shall regard r and
r’ as independent variables. To do this, it is necessary
to extend the known functions og,, o7, S, and §; to be
defined for r’'#€¢™r. We choose these extensions in such
a way that for each r they are periodic in r’. If the ori-
ginal functions o5, or, S, and 6; are exactly periodic,
then os,, or,, S, and 6; are independent of r and the
above extensions need not be constructed.

(2.10)

(2.11)

3. THE INTERIOR SOLUTION

To determine a solution # of (2, 10) which is appre-
ciable throughout D, we introduce the slow time vari-
able £ = €7 in (2.2)—(2.5) and we assume that ¢ and C,
possess asymptotic power series expansions in €:

~25 e (e, v’ v, 1),

n=0

(3.1)

C;~22 €"Cy o(r,x', v, t). (3.2

n=0
Introducing (3.1) and (3. 2) into (2.10) and (2. 11),
using 8/37 = €%3/3¢, and equating the coefficients of dif-
ferent powers of €, we obtain the sequence of equations

=l A,z
Td)n:'Z‘bLn-jwi -V VZtbn-l -
j=

+>)\C 2+0,55, (3.3
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é‘ca";“!: f9i¢ndv'— NG (3.4
where
T=v.-V' =L, (3.5)

and where ¥, =9,=C, =C; »=0. Equation (3. 3) with
n=01is TY;=0, which has the general solution

Zpo(r; I", v, f)‘AO(r’ t)d)(ry I", v, t)' (3.6)
Here ¢ satisfies T¢p =0, i.e.,
0=v-V'é(r, I", v, ) +vopy(r, r'y v, o(r, r', v, 1)

- Jv'os(r, ' v = v, De(r, v’ v, 1) dv'. 3.7

In this equation r and / occur as parameters and for
fixed values of r and {, the scaled cross sections org
and o, are periodic in r’. We require that the solution
¢ of (3.7) be unique (up to a multiplicative constant),
positive, and periodic in r’.

These are conditions on oy and 05y, They mean phy-
sically that if the domain D were extended periodically
to fill R®, then R® would be exactly critical with respect
to opy and osy. This is because &(r, r’, v, ), extended
periodically in r’, would be a positive, bounded solution
of the sourceless transport equation (3.7) on R? (in
which /, we recall, appears only parametrically). Our
problem for wi is thus a perturbation of this infinite
space problem in the following sense: Our domain D is
large but not infinite, our cross sections are almost
but not exactly periodic, and our problem is not station-
ary but depends slowly on time. To leading order, the
perturbation about the infinite space problem is ac-
counted for by the undetermined function A; in (3.6).

To make ¢ unique, we impose the normalization

1= [ ar'1* [ [ #(r, x’, v, ) dv’ dr’, (3.8)
where C is a cell.
Next we consider Eq. (3.3) withn=1:
T == Ay(L1¢) - v - V(A). (3.9

To solve this equation, we consider the Banach space
X of functions f(r’, v), periodic in r’, with norm
— 7]-1 14 !
=L, de'l* [, [l vldvar'.
In this space the operator T=v-V’'~ L, has, by the
above constraints on oy, and ogg, the eigenvalue A=0
with geometrical multiplicity one. Thus the conjugate
operator T*=~v-V’~ L§ has the eigenvalue A=0 with
geometrical multiplicity one and with eigenfunction ¢*.
We assume that A=0 is an isolated point eigenvalue of
T, and we normalize ¢* by
1= [ [o*¢avar’. (3.10)
Then by the alternative theorem, '’ Eq. (3.9) has a
solution in X (i.e., periodic in r’) if and only if the
solvability condition

0=A, [, [ ¢*Lig*dvdr'+ [, [ ¢*v.VA@pdvdr’ (3.11)
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is satisfied. Because of (2. 6) and (2.7),
¢(r1r',v; t):¢>(r,—r', (3-12)

(where r’'=0 is the center of a cell), and this relation
holds also for ¢*. Thus the second integral in (3.11) is
zero, and the solvability condition (3. 11) for nonzero
Aq reduces to

-V, t)

0= [, [¢*Ly¢ dvdr’, (3.13)

This is a condition on L, which is met, for instance, by
L,=0.

The general solution of (3. 9) may now be written
h=Ap— AT L ¢ - Ty - VA, (3.14)
Here T-! is the unique pseudo-inverse of T satisfying
0= [, [ o*T'fdvar’
for any function f(r’, v) € X such that
0= f [ ¢*fdvdr’.

(3.3) with n=2:
VoV)(Ap— T VAp =~ AT L 0)

To proceed, we consider Eq.

Tip=AcLzd +(Ly -
——a—at—(Aoqb) +1Z,‘A,.ci,0+s (3.15)

The solvability condition for this equation is, using
(3.10) and rearranging,

ag;“ Vellig-VAy) +M, - VA0+M2A0+Z)A Q;+S,, (3.18)
where

Mioles )= [ [ [vo*T¢v]dvar’, (3.17
My(r,0) = [ [ [ve*T(v.V¢) = (v- V6*) T 'vg ] dv dr,
(3.18)

My(r, t) = {c f [¢*VOVT-1v°v¢+¢,*L2q>
_¢*L1T‘1qub—q’>*%?]dvdr’, (3.19)
Q,(r, t):fc [ ¢*C; yavar’, (3.20)
So(r, )= [, [ ¢p*Savar’. (3.21)

The equation for @;, obtained from (3.20) and (3. 4),

is
0Q; .
*aT':BiAo' Q5 (3.22)
where
Bir, 0= [, [ o*(x,x’,v, 1)
x [ 8,(x, v, v ~v, )¢(r, r’,v', ) av' dvdr’.
(3.23)
In deriving (3. 16) we used the results
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0= [, [ve*xT*Lig dvdr’,

0= [, [ vo(T*)" Lo avdr’,

0= [, [ (v-VvoNT*) Li¢*dvadr’,
0=[ [¢*v-VT'Lpdvar’.

The first of these holds because L, ¢ satisfies (3. 12),
so by symmetry T L,¢ along with ¢* satisfies (3.12).
The other integrals are zero for the same reason.

Equation (3. 16) is a diffusion equation for A, contain-
ing the precursor (delayed neutron) densities @;, which
satisfy Eqs. (3.22). If (3.16) is satisfied, then i, can
be determined from (3.15). A diffusion equation for A,
can now be determined as the solvability condition for
equation (3. 3) with »=3. This equation will contain new
precursor densities, and equations for these can be ob-
tained from (3.4) just as was done above for @;. This
procedure can be continued recursively to generate
equations for any 4,, n= 0, along with the appropriate
precursor densities. However, we shall not do so here.

4. THE COEFFICIENTS OF THE DIFFUSION
EQUATION

In this section we shall give some results about the
form of the coefficients//j,, M;, and M, in Eq. (3.16)
for certain cases of physical or computational interest.
In the first three cases considered, we make certain
assumptions about the dependence of the material prop-
erties of D on the variables #, r, and r’ to various or-
ders. In the fourth through sixth cases, we assume that
the cells are long cylinders with material properties
which are invariant with respect to certain reflections
and rotations. In the seventh and final case, we assume
that the cells are thin slabs.

1. The material properties of D are independent of t
to O(1)

First, let us consider a domain D in which the changes
in material properties with respect to f are of order €.
Then ory, sy ¢, ¢*, iy, and M, are independent of £,
The coefficient M,, which is related to the “local” re-
activity, is in general time dependent due to its depen-
dence on L; and L,. We note that 8; could have been ex-
panded as a power series in €, and if so the first term
in its expansion would occur in (3.23). K this were time
independent, then ; would be time independent also.

This case of small changes in time of the material
properties is of computational interest because it has
general validity, and for it the problem for ¢ becomes
one in which 7 does not even occur parametrically.

2. The material properties of D are independent of r and t
to Of1) and to O(€?)

Next we consider a domain D in which the slow time
and spatial variation in o5 and o7 is of order €. Then
as¢ and or( are independent of r and ¢. Hence ¢ and ¢*
are independent of r and ¢, /M, is a constant, M, =0,
and the first term in the integrand of M, is zero. If
also o5, and o7, =1, 2, are independent of r and ¢
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then M, is a constant. This last case occurs for example
if 05 and or are exactly periodic in space and indepen-
dent of time.

3. The material properties of D are independent of
r' to Of1) and to Ofe?)

Now we consider a domain D in which the fast spatial
variation in o5 and o4 is of order €. For this case og
and oy, are independent of r’ and so ¢ and ¢* are in-
dependent of r’. It is shown in Ref. 3 that ¢ =¢(r,v,?)
and ¢*=¢*(r,v,t), where v=v8. Also, (T ¢v)(r,v, 1)
= QT ¢v)(r, v, ) where T, is the operator

(T (x, v, t) =vop(r, v, Of(r, v, 1)

- [v'ok(r!, v =0, )f(r, 0", D) du'.
In this equation g% is the n=1 coefficient in the
Legendre polynomial expansion of og:
= 2n+1
osolr, v =v, ) =2 T

n=0

olylr, v’ =0, P, (R- Q).
Equation (3. 17) now yields

Mo(r, ) =Y (4—::[ dr')f vo*(r, v, N(Tilpv)(r, v, vt do.
C
4.1

Thus if og, and 0p, are independent of r’, then/k is
proportional to the identity matrix.

If all quantities through order €® are independent of
r’, which occurs if no fast variation is present, then
/lg is given by (4. 1) and the integrations over C in
(3.16)—(3. 23) are superfluous. Also, if o7, and og, are
independent of #, then our results agree with those
stated in Ref. 3 in different notation.

4. D consists.of long cylindrical cells

Next we consider a three-dimensional domain D con-
sisting of long slender cells. This configuration occurs
in many reactor cores. I the cells are oriented in the
direction of the coordinate axis of 73, then og and oy
are functions of »{ and »;, but not of #5. Thus the solu-
tion ¢ of (3.5) is independent of #; and is an even func-
tion of vy, For this case, the 3X3 matrix/ii, reduces to
a (2X2)x(1x1) matrix in the following sense: If ¢; is a
coordinate vector in the direction corresponding to 7;,
then M; =e;-/iy-€,=0 for j=3 and k=1, 2, and
conversely.

To see this, we observe from (3.17) that
M;p= fc f vi(p*T-i(p”kdvdr’“
If j=3 and k=1 or 2, then T ¢v, is even in v; and the
integrand is an odd function of »;. Thus the integral is
zero as claimed. If j=1 or 2 and =3, then
My, = jc j vk‘b(T*)'ld’*Uj dvdr’,
and this integral is zero for the same reason.

5. The material properties of a long cylindrical
cell are symmetric across a plane parallel to the cell

Next, if D consists of long slender cells whose physi-
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cal properties are symmetric across the »,, 7s-plane,
then/l, is diagonal. (To prove this, we need only show
My, =My =0.) This follows from the fact that a rotation
of angle 7 about the 7 axis must leave /i, invariant.
Thus /hy =R /M,-R, where

10 0
R=l0o~-1 0 |
00 -1

and it follows immediately that M;, = M, =0 as claimed.

6. The material properties of a long cylindrical cell are
symmetric across a plane parallel to the cell and
invariant with respect to a rotation of the cell by angle
0Fm

If, in addition to the symmetry described in the above
paragraph, a cell is also symmetric upon rotation about
the r;-axis by an angle 8+, then My; = M,,, This can
occur in hexagonal cells (for which 6=1/3) or square
cells (for which #=r/2). Once again, / ; must be in-
variant with respect to the rotation matrix

cos8 — sind O
R ={ sin®
0 0 1

cosf 0},

and the result M;; =M,, immediately follows,

7. D consists of adjacent thin slabs

As a final special case, we consider a domain con-
sisting of thin one-dimensional slabs. The above con-
siderations apply here, and the matrix /i, is diagonal
if one of the principal directions (say e,) is taken to be
normal to the slab boundaries. Also, My =M,,.

In general geometries, we see from (3. 14) that the
determination of /| ; depends on the determination of
1n=T-ly¢, where 7 is periodic in /. The equation for
nis Tn=v¢, and the general solution of this equation
may be written

W:r'¢ + ‘5:

where T£=0. The periodicity conditions on 7 lead to
appropriate conditions for £, but we shall not consider
these here. We wish only to point out that the problem
for £ may in some instances be simpler to solve than
the problem for 7.

5. INITIAL CONDITION FOR THE DIFFUSION
EQUATION

To determine the initial conditions for 4, and @;, we
must undertake an initial layer analysis. In particular,
we assume that several mean free paths away from the

boundary of D the angular density ¥ may be written as
b=yt (5.1)

We have already determined ¥’ in Sec. 3, and we
take #' to be an initial layer which decays in time after
the initial time 7=0.

To determine ¢° we introduce the following expansion:
P~ 25 € (r, 1, v, 7). (5.2)
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We require §° to satisfy (2.10), (2.11) with S=0, since
S is accounted for by ¥'. Then, introducing the series
(5. 2) into (2. 10), expanding os,, 0, and 8; [as defined
in (2.4), (2.5), and (2, 3)] in powers of €7, and equat-
ing the coefficients of different powers of €, we obtain

as the equation for
20 ~
"_a?o + T(]lpl)u =0.

Here Ty=v-V—~ L, where L, is defined by

(5.3)

Lof(r, v, v)= [ v'og(x, ', v/ =v, Of(x, v/, v') dv’
- Z’O'T()(I‘, I‘,, U, O)f(!', I", V)°

Upon multiplying (5. 3) by ¢¥ = ¢*(r, r’, v, 0) and in-
tegrating, we obtain

0 o ’
O:S?j;fmwodvdr .

Thus in order that ﬂ}n —-0as 7T—-=, it is necessary that

0= [ [ ¢*(x, v, v, Odylr, 1, v, 0) dvdr’. (5.4)

(This condition is also sufficient if the spectrum of 7,
other than the simple eigenvalue A =0, lies in the half
space ReXr ™y > 0. We assume that this is the case.)

Setting T=0 and € =0 in (5. 1) and using ' = A +0(e),
we obtain, upon eliminating ¢, from (5. 4),

Ayr, 0)= [, [ ¢*(r,x',v,0r, ¢/, v, 0 dvdr’.  (5.5)

This is the initial condition for A;. The initial condi-
tions for @; are obtained from the prescribed initial
conditions for C; and equation (3. 20). The initial condi~
tion for EL\, is

:Do(r, r,v, 0 =d(r, 1, v, 0 — 4,(r, 0¢(r, r’, v, 0). (5.6)
The initial layer &, is now the solution of (5.3), (5.6)
and may be written in terms of 7 as

Dy(x, vV, 7) :?1{[-“1' ) exp(\TY (M + T) (I - P)

Y-

X¥(r, r’, v, 0) dr,
where P is the projection
Pf=o¢ [, | ¢*favdr’,
Thus ﬂ)o decays as 7 —=, the decay rate being of order
one with respect to 7. But 7 is a scaled time variable,
given in terms of unscaled time ¢’ by 7= €t’. There-

fore, the decay rate of 3, is fast, of order ¢, with re-
spect to unscaled time,

6. BOUNDARY CONDITIONS FOR THE DIFFUSION
EQUATION

To obtain the boundary condition for the diffusion equa-
tion, it is necessary to perform a boundary layer an-
alysis near 8D by introducing stretched spatial coordi-
nates, as was done in Ref. 3. To do this one chooses
a point rye 9D and defines r” =€ (r - r(). Then, near
ry,, ¥ is treated as a function of r” rather than r or r’,
¢ will asymptotically satisty Egs. (2.10), (2.11) with
S=0 (since S is accounted for by ¥‘) and will be re~
quired to decay with distance from 3D, Furthermore,
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if the boundary conditions are slowly varying in time,
then ¢® will depend parametrically upon ¢ rather than 7.
Then for large values of T (i.e., after several colli-
sions) the neutron density near oD will be

D~ + P, (6. 1)

If the incoming neutron density is prescribed, then
the boundary condition for A; is determined as in Ref.
3 by requiring ¥~y + ¢ to satisfy this condition and ¢’
to decay with distance from 3D. If the incoming neutron
density is not prescribed but instead D is surrounded by
an exterior reflecting region D,,, then we must con-
struct the asymptotic solution ¥, in D,, and equate i
with ¢ on 3D. This yields equations for A, on dD.

If D,, is either a perfect absorber or a subcritical
domain in which the neutron density is appreciable only
within a few mean free paths of D, then i, is either
zero or a boundary layer, respectively. For these
cases the continuity condition across 9D is met to lead-
ing order by setting ¥,,=¢” =0 on 9D. Furthermore,
since 9D is the boundary of many small cells, it has the
form

oD={t +er(ett)| Ec T} (6.2)

Here I' is a smooth surface close to 3D. With O(¢)
error, we may take the boundary condition on A, to be

0=Ar, 1), (6.3

If D, is a near critical domain, then to leading order
Yex 18 determined by the solution of a diffusion equation,
and it is inappropriate to set ¥,,=0 on é¢D. For this
case, as with the case in which the incoming density is
prescribed, the full boundary layer analysis must be
undertaken.

rel,

In Ref. 3, the boundary layer problem near 2D re-
duced to a constant coefficient half space problem for
two reasons: The material properties of D had slow
spatial variation and the boundary ¢D was smooth. In
this paper neither of these assumptions holds, and the
boundary layer problem appropriate to the present case
is a full three-dimensional problem with variable co-
efficients. Since this problem cannot in general be
treated analytically, we shall not consider it further
here.

7. SOLUTION OF THE DIFFUSION EQUATIONS,
AND CRITICALITY

Let us take the coefficients in Eqs. (3.16), (3.22) to
be independent of {. Also, let D be surrounded by a per-
fect absorber or subcritical domain, so that the appro-
priate boundary condition for 4, is given by (6. 3),

Then with initial conditions prescribed for 4, and @;,
Egs. (3.16), (3.22) can be solved using the Laplace
transform method. Letting A, Qi, and S be the Laplace
transforms of 4;, @;, and S and denoting the diffusion
operator in (3.16) by K=V -/Ji;- V+ M, - V+M,, we
obtain

sAq(r, s) = Ag(r, 0 = KA(r, s) + 5 0Q4(x, ) +8yfr, )

13
and

$Qi(r, 8) = Q,(r, 0) = B,A,(r, s) = ,,Q,(x, 5).
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Eliminating Q,- yields

Ayr, )=l K} (Ao(r, 0) +8y(r, s)

by
+2——Qi(r 0)),
where CsA T
_ AB;
gls)=s =2,

and where A(r,s)=0for re .

Using the inverse transform, we obtain

a+ie

Aylr, t) =—1. exp(st)A(r, s) ds,

m

& - %
where « lies to the right of the singularities of the in-

tegrand. These singularities are those s for which g(s)
lies in the spectrum of K.

Let a, denote the singularity of flo with greatest real
part. Then if Reay<0, D is subcritical; if Req=0,
then D is critical; and if Reay >0, then D is supercriti-
cal. This is because solutions of (3.186), (3.22). with
S,=0 will decay, approach a constant value, or grow
as ¢ -« in these respective cases.

The above considerations apply only if the coefficients
/Mo My, M,, and B; of (3.16), (3.22) are independent of
t. If these coefficients cannot be regarded as indepen-
dent of time, then the above considerations do not ap-
ply. Such instances occur in reactor dynamics, where
the physical properties of D are taken to be time and
temperature dependent. For this case the above co-
efficients are indirectly functions of A;, and so the
problem is no longer even linear. If the dependence of
the coefficients on A, is made explicit, then (3.16) and
(3.22) can be used to study stability near an equilibrium
point. However, we shall not consider this topic here.
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Bicklund transformation, superposition formula, and multisoliton solutions are constructed for the Toda lattice
difference—differential equation with some discussion of its generalizations.

I. INTRODUCTION

To understand many nonlinear, nonergodic phenomena
such as Fermi—Pasta—Ulam recurrence, Toda' pro-
posed a one-dimensional nonlinear lattice model with
neighboring particles interacting through an exponential
potential function, V(r)=a[(1/b)exp(~by)+7], ab>0,
which admits exact analytic solution, It is therefore an
exactly soluble many-body system, By varying the pa-
rameters @ and b, this model can represent a wide
spectrum of interactions, from the harmonic limit (ab
finite, a — «, b~ 0) to the hard sphere limit (ab finite,
a—0, b~ =), Therefore, many useful results can be ob-
tained by solving this model. The Hamiltonian function
for the dynamics of Toda lattice with unit mass and nor-
malized parameters is

H:? Pn2 - {exp[‘ (Qn - Qn-l) - 1}’ (1)

where P, is the canonical momentum of the nth lattice
particle and @, is the displacement from its equilibrium.

The corresponding equation of motion is
@,=P,, P,=-{expl- @,.-@,)]-exp[- @,- QI
(2)

It is a remarkable discovery by Toda' that this nonlinear
difference evolution equation allows analytic stable soli-
tary wave (soliton) solutions. He obtained the single-
soliton solution and the two-soliton solution, Hirota?
later generalized it intuitively to N solitons. In the
meantime, Gardner?® et al. discovered the multisolitary
wave solutions to the Korteweg—de Vries equation and
developed a general analytic scheme, the so-called in-
verse scattering problem method, to solve the KdV
equation exactly. On the other hand, there exists anoth-
er analytic approach, the Bécklund transformation, ‘to
solve a set of nonlinear equations. The usefulness of
this latter method was recognized by Lamb, ® Wahlquist
and Estabrook,® and was recently demonstrated to be
equivalent to the inverse scattering problem’ for the
nonlinear differential equations encompassed in the
schemes of Ablowitz et al.® An inverse scattering prob-
lem for the Toda lattice equation was first found and
solved by Flaschka.® Using the discrete version of in-
verse problems developed by Kac and Case,'® he ob-
tained general multisoliton solutions identical to the
Hirota’s intuitive result. In this paper we will demon-
strate the Bicklund transformation approach of solving
the Toda equation, thus providing the first case where a
nonlinear evolution difference equation can be solved by
a discrete form of Bicklund transformation. This trans-
formation is derived from an inverse scattering problem
equivalent to the Flaschka’s. Superposition formula is
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then derived from this Bicklund transformation, and
multisoliton solutions are constructed. Because of its
simplicity, the Bicklund transformation method is very
appealing in constructing the multisoliton solutions, It
also has the advantage to enable one to construct “peri-
odic wave -+ soliton” solutions, which can not be ob-
tained from the inverse problem,

In the last section, we shall also demonstrate ways
to find generalized Toda equations that admit the same
inverse problem.

Il. SCATTERING PROBLEM AND BACKLUND
TRANSFORMATION

Let us consider an inverse scattering problem rep-
resented by the two coupled wave equations:

2a,vy,,= (@aZ +2)\b, ., = N*) gy, 0 H AV,
®3)

20,05, = (A =2b,,) Vg 101 = V1, pa1s

131'" =40, .+ BV, s @)
a0 = Gy, = Aps s

where
A,=-b, B =x-2xp,-4a2, C,=1, (5)

v,,, and v, , are two wavefunctions; a, and b, are time
dependent potentials with eigenvalue A independent of
time, These equations are integrable if and only if

a,=a, (b, -b,), b=2@a%-az)). ®6)
This set is equivalent to the Toda equation (2) by the
following identification:

2a,=exp[- (@, - ,.,)/2] and b, =- /2. "
On the other hand, of letting

4a§=1+1;)", 2bn:w"—w"_1, (8)
the Toda equation can also be cast to a convenient form:

W, /(1 +w)=w,., +w,,~2uw,. 9)

To derive the Bicklund transformation, we first define
#=v,/v,; Eqs. (2) and (3) then reduce to two Riccati
equations,

(7\+ll")(7\—2[)’”1—”“,1):40:, (10)

O +u)~2b, —u,)=4a?+d,.
These equations represent a mutual transformation,
generalized Miura transformation (GMT) between the
following two nonlinear equations. One of them is the
Toda equation (9) satisfied by w,, another one satisfied
by u, is the following:
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n? X(‘)"/(h“‘ (.]n)=exp[— (Un - Un-l)]
—exp[- (U,,; - U)]. 1)
It is also obvious that Eq, (9) is invariant under the
index transformation, m — 2n —m. Therefore, a similar

inverse scattering problem exists with the correspond-
ing index changes, that is,

u =0

2a,7,,,= @@+ 20D,y = A2 Ty oy + ATy oy

(12)
25472," =(- 2bn-l) 772,;.-1 - 51,,.-19
El,n = n;jl,n + Enaz,n ’
N N (13)
;Z,n = Cnal.n - AnvZ.n ’
where
A=-%, B=ri-2ab, -4z, G,=1.
The integrability conditions for these equations are
a,=a,(,.,-b,) and b =2@- &,). (14)

The identifications 432=1+#%,_ and 2b, =w, —w, , Te-
duce it again to the Toda equation (9). Define similarly

%, =7y,/T,y,; we get two Riccati equations

()\ + 77,,)(7\ - 2‘5"_1 - ﬁn-l)=4a‘:!

7 k (15)
O +u,)-2b, —u,)=4a2+1,.
After elimination of @, and b, we found &, satisfying
=0, Ab/6+0)
=exp(- (T, - U,..) - exp[~ (T, = )] (16)

Now, suppose (x, U,) constitutes a solution to Eq.
(11); then Eq. (10) transforms it to w,, a solution of
Toda equation (9). However, (-x, —U,) would then be
a solution to Eq. (16), and correspondingly, Eq. (15)
transforms it to w/, another solution of Toda equation
9). Therefore, a reversible route is found for the
transformations between two solutions w, and w!, to the
same Toda equation (9). We can illustrate this trans-
formation route as the following:

MUY (=2, = U=, T)

4 4
' GMT ' GMT (17)
W, +— BT — W

Rewrite Eqs, (10) and (15) into

A +u,)n-2b,,, ~u,,)=4a2,, (18a)

W Fu, IO =20, ~u,,)=4a2, +4_,, (18b)
and

O+, )0+ 28 — 0, ) =432, (192)

O+, )+ 28— ) =42 -4, (19b)

Using Eq. (8) to change a,’s and b,’s into w,’s and doing
some algebra, (19b)+ (19b) - (18a)~- (18a), we get

(20)

+ (un+l —un)[un _un¢1+ (w;-rl - wn-ol)_ (wr’x - wn)].

dn-rl - 7'2" = (u.):l-ri - t'vnu) - (ﬂ); - 72),1)

Therefore, u, =w! —w,. Substituting it into either Eq.
(18) or (19), we get finally the Bicklund transformation:
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W+ —w)A+w, —w!

n+l

)=1+w, 1)

A +wh —w Y\ +w, - w)=1+),

This transformation enables us to construct nontrivial
solutions from a known one. For example, let w, =0,
a trivial solution; we get from (21) then

w!, =+ sinhgtanh(ng + sinhgt + a), r==coshy,
or 22)
w’, = sinh?@ sech?(n¢ + sinhet + a),

The latter is a single soliton with amplitude sinh?¢ and
travelling with speed (sinh¢)/¢ in both directions. Sub-
stituting this single soliton solution back into the
Bicklund transformation, we can find the two-soliton
solution and so on. To do so, it seems that we have to
solve a first order nonlinear evolution difference—dif-
ferential equation, which is not trivial. However, a re-
markably nice consequence of the Backlund transforma-
tion is the possibility of deriving a nonlinear superposi-
tion formula for the solutions. This formula enables
one to avoid integration quadratures and makes possible
the construction of multisoliton solutions by algebraic
means only.

The superposition formula is derived from the
permutability assumption of the Backlund transforma-
tion,* that is, a solution w? generated from, say »?, by
applying twice the Bicklund transformation, first with
parameter A,, then A,, is identical to the one obtained
with the reversed order, Then, a result consistent to
the permutability assumption is obtained as the super-
position formula., For Toda lattice, we found the follow-
ing superposition formula:

(g = 202 + w0) = (o} + w2) + (0 +1,)]
(23)

= (w? - wd)(w) - w?).

We demonstrate in the following the construction of two-
soliton solutions. Starting with vacuum =0, we have,
from Eq. (22), single-soliton solutions:

wi=% sinhg, tanh(ng, + sinhe f + a),
* sinh@, coth(ng, + sinhef + a); X, == coshy,
and

+ sinh@, tanh(n@, + sinhe,t + a,),
2 —

Y=z sinhg, coth(n@, = sinhg,t + a,); Ao =% COSh@,.
From these solutions, both regular and singular two
soliton solutions can be obtained. To get regular solu-
tions of physical interest, we follow the rule of
Wahlquist and Estabrook, ® choose regular w! and singu-

“lar w?. Two kinds of regular two-soliton solutions exist,

with (i) x;x,> 0 and (ii) A2, <0, corresponding to the
collision of two solitons travelling in the same direction
and in the opposite directions respectively. We consider
first the case (i). It is convenient to look into 72 instead
of w itself. From Eq. (23), we have

pota <¢ (A, —,)[sinhe, tanht, ¥ (\, +2,) — sinh(pztanhﬁz])
L (A, = 1,) ¥ [sinh@, tanh¢, + sinh@, tanh¢,] ’
(24)

H.-H. Chen and C.-S. Liu 1429



where
£,=n@,+sinhet+ a, and £,=ne,+sinhe, + a,.

It can be seen easily that as £, —+ <, the two-soliton
solution approaches

@3 — sinh?, sech?(£, + ¢%), (25)

n

the second soliton solution with a phase shift,

Sinh[«ol - (02)/2]>

2 —
$i=% g x1n (sinh[((pl 0.0/2]

sinh[(<p1 - (ﬂz)/2] )

2¢5=i @,+1n (W

or

sinh[(g, - ¢,)/2]

sinh| (¢, + @,) )/2]

is the phase change experienced by the second soliton
induced by the collision. Similarly, the phase change
of the first soliton is

sinh[ (¢, + ¢ )/2]>
Ad,==1 - 2 =~ Ad,.
b= n(Slnhl (0, - 0,)/2] &
Therefore, it is clear that Toda solitons reemerge after
collision with the same identities but a phase shift, A¢.

Ag,=¢,+¢; =+1n (26)

27

The result for case (ii) (A;2, < 0) is similar; we have,
instead of (26) and (27), the following phase shift:

~ B cosh{ (¢, — ¢,)/2]
A¢,=~A¢,=zln (W) :

These results are identical to those obtained by Toda
before. However, Eq, (23) enables us to go beyond the
two-soliton solutions, Multisoliton solutions are ob-
tained only by iterating the procedure outlined above.

(28)

I1l. CONCLUDING REMARKS

1, Equation (11) generated from (10) is a new member
of nonlinear evolution difference—differential equation
that admits soliton solutions, The relation u,=w] —w,
relates its solutions to the solutions of Toda equation.
We have therefore, as a by-product to our solutions of
Toda equation, found a branch of solitonlike solutions
to this new equation.

2, The Bicklund transformation, Eq. (21), is not
always nontrivial. If we let w,=w,_;,,, then the two
transformation equations become identical (X +u,_, ,,
-w, )\ +w, —w,, ,,)=1+4a . It can be shown that solu-
tions to this equation are not solitons.
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3. The inverse problem (3) and (4) can be more gen-
eral, that is, Eq. (3) and (4) does not uniquely deter-
mine the functional form of A, B, and C, The integrabil-
ity conditions are actually

@,/a,+A, —A, )x-B, - (da?+2xb_,
(An +1 +An + én/an)(4a5 + 2>\bn+1
- 8(1"(;" - 2>\Z;n+l -1B,,,=0,

—Az)cnolzoi
-A)+B (-2, ,)

(An+l and) 1:0’
(7\ - zbnd.)(dn/an —An +An+1) + Cn (4an + sznwl - )‘2)
+B,,+2b =0,

+A,~a,/a)+Cx—- (-

(29)

Finite series expansions of 4, B, C to different orders

of ) leads to different equations of interest. The Toda

lattice is but the simplest example. The next generali-
zation would be

‘;n/“n=br2. —-b+ai, —al,, (30)
b,=2az(b,  +b,)-2a_,(b,+b,,)
with the identification
A=-br+@ [a,-b +a?-a?,),
B,=)*-b 2 +2( [a,— b2, —aZ—a?, )\ -4a’b,,,
C =r+b,. (31)

Bicklund transformations and solutions to these gen-
eralized Toda equations can be found along the same
line as this paper presents, They are similar to the
case of Toda equations.
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Harmonic mappings of Riemannian manifolds and stationary
vacuum space-times with whole cylinder symmetry
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We consider stationary, cylindrically-symmetric gravitational fields in the framework of harmonic
mappings of Riemannian manifolds. In this approach the emphasis is on a correspondence between
the solution of the Einstein field equations and the geodesics in an appropriate Riemannian
configuration space. Using Hamilton-Jacobi techniques, we obtain the geodesics and construct the
resulting space-time geometries. We find that the light cone structure of the configuration space
delineates the distinct exterior fields of Lewis and van Stockum which together form the most

general solution with whole cylinder symmetry.

1. INTRODUCTION

In a previous paper! it was shown that the classical
field theories of physics may be formulated in the
framework of Eells and Sampson’s theory of deforma-
tions.? There it was found that the field equations of
these theories were the conditions for extremizing an
invariant functional, “energy”, associated with the map-
ping from the space—time manifold M into another
manifold M’. In general M’ had to be a principal fiber
bundle over M with a structure group which is identified
with the gauge group of the physical theory. However,
for a restricted class of gravitational fields, namely
stationary axisymmetric exterior solutions, it suffices
for M’ to be a specific Riemannian manifold, and the
Einstein field equations can then be formulated as ex-
tremal submanifolds of M’ according to Eells and
Sampson’s theory of the harmonic mappings of Rieman-~
nian manifolds. The geometry of M’ turns out to be
that of a hyperboloid as it was first discovered by
Matzner and Misner?® and later elaborated on by Matzner?
and Neugebauer and Kramer.® In this paper we shall
specialize further to whole cylinder symmetry in order
to reduce the discussion of these exterior fields to a
study of the geodesics of M’. The specialization to static
spherically symmetric gravitational fields where the
Einstein field equations can be formulated as the geo-
desics of a flat configuration space is discussed in the
Appendix, The advantage of this formulation lies in the
existence of a very powerful technique for obtaining the
geodesics, namely the Hamilton—Jacobi theory. We
shall show that on M’ there exists a complete set of
first integrals of motion and the Hamilton—Jacobi equa-
tion is solvable by a separation of variables in a co-
ordinate system adopted to the Killing directions. This
enables us to obtain Hamilton’s principal function and
thereby construct the most general solution of the
Einstein field equations compatible with the assumed
symmetries. We find that, depending on the range of
values taken on by the constant of motion in M’, the
corresponding space—time solutions fall into three
distinct classes. The crucial constant is the “energy”
first integral and when it is positive, negative, or zZero,
that is, for “time-like”, “space”-like or “null” geode-
sics on the hyperboloid we have the vacuum solutions of
Lewis® and van Stockum.” Thus the transition from any
one of these solutions into another requires the crossing
of the null cone in M’. Finally we examine the relation-
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ship between the constants of the motion on M’ and the
parameters entering into the metric for space—~time .

2. HARMONIC MAPPINGS OF RIEMANNIAN
MANIFOLDS

In the theory of harmonic mappings of Riemannian
manifolds, following Eells and Sampson? we start by
considering two given Riemannian® manifolds M and M’
with the metrics

(a,6=1,2,...,n), (1)
, ™) @)
respectively and a map f: M — M’. We are interested in
constructing invariant functionals associated with this
mapping. For this purpose we define for each point P
in M an inner product { , >p on the space of 2-covariant
tensors of the tangent space to M at P, If ¢ and 8 are
two such tensors, then

(a,B)p=0a,, B8 2", 3)

where g is the Riemannian metric tensor on M. A par-
ticular example of an invariant functional is the “energy”

E(D =, (& 18 *1, @)

ds® =2, dxe dx?
ds’zngB d_VA dyB (A,B:1,2, P

where we consider the integral over the volume of M

of the inner product of g with the induced metric f*g’.
The invariant volume element on M is denoted by *1, In
terms of the local coordinates the energy functional is
given by

E(f):f gl afAiﬁg“”\/Igl dnx (5)
M

B 2xe xb

and those maps for which the first variation of E(f) van-
ishes are called harmonic maps. The necessary and
sufficient conditions for a map to be harmonic are given
by the Euler equations

of" af°

?
AfEFTA5e xe 3x?

gab =0, (6)
14

where I'* . are the coefficients of the Riemannian con-

nection on M’ and A denotes the covariant Laplace ope-

rator on M.

The physical interest of this theory lies in the fact
that many familiar equations of physics are derivable
from a variational principle where we identify a suitable
specialization of the energy functional as the action, In
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particular if we consider the problem of stationary,
axisymmetric gravitational fields which are described
by the line element®

ds? = — pe® (dt — wdd)? + p 279 [(dp)? + (dz)?]

+ pe 2 {do)? N
where 3, y, and w are functions of p, z only, we find

that the Einstein field equations are derivable from the
variational principle 61=0,

I1=27 [[(VO)? - Le*(Vw)?] pdp dz, (8)

where V is the flaf space gradient operator in the co-
ordinates p, z. We note that once the solution for ¥ and
w is obtained the remaining metric coefficient y can be
obtained by quadratures. The integrand in Eq. (8) is up
to a divergence Einstein’s Lagrangian density Vv— g R
for the metric (7). Therefore, if we consider two
Riemannian manifolds with the metrics

ds*=(dp)* + (dz)* + p*(do)?, )

ds’? = (dY)? - Le® (dw)? (10)
and a map f: M — M’, the requirement that it be a har-
monic map reduces to the condition that the Einstein
field equations for (7) be satisfied since the energy func-
tional formed by using (3) and (10) is the same as the
action in Eq. (8). Hence M’ with the metric (10) is the
configuration space for this class of gravitational fields.
Note that M is effectively two-dimensional since the
maps we shall consider will be independent of ¢.

In order to construct the harmonic maps and obtain
solutions of the Einstein field equations we need to solve
the Euler equations (6). The metric in Eq. (10) de-
scribes a space of constant curvature. Since M’ is not
flat, Eqs. (6) are a set of coupled nonlinear partial dif-
ferential equations. However, we note that if we special-
ize to whole cylinder symmetry, thus suppressing the z
dependence of the metric coefficients in Eq. (7), Egs.
(6) reduce to ordinary differential equations which de-
scribe the geodesics of M’. In terms of harmonic map-
pings of Riemannian manifolds such a specialization re-
sults in M becoming one-dimensional while the geom-
etry of M’ is unchanged. The problem of obtaining new
solutions of the Einstein field equations is now vastly
simplified since we require only a knowledge of the
geodesics of M'. For this purpose we shall turn to
Hamilton—~Jacobi theory which is given in the next
section.

3. THE HAMILTON-JACOBI THEORY OF GEODESICS
AND THE GENERAL EXTERIOR SOLUTION

We shall now investigate the geodesics of M’ with the
metric (10). For this purpose we write down the
Hamilton—Jacobi equation

@ A SN _
o (s, ayA) =0
where y4 :{w,w} are the generalized coordinates and we
are parametrizing the geodesics by p, which will have
the same meaning as the space—time coordinate in Eq.
(7). The Hamiltonian in Eq. (11) is simply the kinetic
energy

(11)

1 .35 3S

He L gras 35 3S 12)
T 8 oy P (
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and the Hamilton—Jacobi equation is given by

3, [aS\? (as) 2
— +{=) —4e®{—) =0.
P o (aw> ¢ ow 0
We require the complete solution of this equation, which
must contain two nontrivial arbitrary constants. Equa-

tion (13) is readily seen to be separable, and we find the
general solution

S=-plnp+owz z(dale 4 g)1/2

(13)

. %‘31 /2 1n{e2w[(4a2 e-4w+B)1 /2 _ Bl /2]}, IR 0,
- 3(= )12 tan (4ot e + ) 2= p) /7)), <0,
(14)

of the Hamilton—Jacobi equation., The various constants
appearing in S are expressed in terms of the momenta
as

a=P,, p-P-te™p (15)

and the affine parameter for the geodesics is given by
1np. This completes the characterization of the geodesics
in M’

In the Hamilton—Jacobi theory, once the principal
function S is constructed, the solution for the general-
ized coordinates is obtained from S by differentiations.
Thus we shall find for the geodesics in M’ the func-
tional dependence of the generalized coordinates on the
parameter p, By virtue of the present formulation,
these solutions when substituted into Eq. (7) give us a
space—time metric which satisfies the Einstein field
equations. But we first note that, as the expression (14)
for S suggests, the three cases 3>0, 3<0, and 3=0
must be clearly delineated since they will give rise to
different exterior solutions,

In presenting the solutions we are going to avoid
labelling the coordinates according to the cylindrical
system foreseen in Eq. (7) because the nature of the
final solution does not in general warrant the interpre-
tation. For 8> 0, that is, for w-like geodesics, there
are two types of solutions distinguished by the sign of
P, H P, <0, the space—time metric becomes

ds? = = [{xhte = 2D dx%) + 2ulxt) e (i’ da®)
2
+ ()= 2 Ax) 1 (@xh)?) + (D)), (16)
where
c=4pt%> 0,
v is an arbitrary constant, and the range of xtis re-
stricted to lie between the values

(17)

0 <x! <lp|te, (18)
where as for P, > 0 we find
ds'?= = [ (x)1e = («")10Y(dx) + 20 (x!) e (dx” dx®)
+ ()= D@ 4 (@x)] = e, (19)

where the definition of the constant ¢ is the same as in
Eq. (17), but the range of x! is now given by

(20)

These solutions were first obtained by Lewis,” and
we shall refer to them as Lw_ and Lw, solutions respec-
tively. If in Eqs. (16) and (19) we take c =1, the result
is flat space—time, where Lw_ is written in a uniform-
ly rotating coordinate system with angular velocity v,

Jvit/e <yt
3
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while for Lw, the rotation is a hyperbolic one. Except
for this case we must restrict the range of x! to the
limits in Egs. (18) and (20). These limiting values cor-
respond to apparent singularities of the metric, but it
is not immediately clear that such a restriction is
necessary. The fact that stationary observers in, for
example, the Lw_ geometry have their angular veloci-
ties bounded by the limits

Q==-vx(x!)° @1)

suggests that x! =0 might be a horizon and x!=|y|"1/¢
an infinite red-shift surface. However, the curvature
invariants become unbounded at both of these points so
that they are real singularities and the inequality (18)
must hold. Similarly the limits excluded by Eq. (20}
are also curvature singularities.

We now turn to the case 8 <0 which correspond to
P-like goedesics. For this case the space—time metric
becomes

ds?=-x!cosu (dxo)2 +2x' sinudx® dx®

+ ()0 2 (@) 4 (@x?)?] + 5t cosu (dxP),  (22)

where
w=-cln{x!/a),c=4(- )12~ 0, (23)

and @ is an arbitrary positive constant. The range of x1
must now be restricted by

aet(Zn-l/Z)/c <x1<aer(2n+1/2)/c, (24)

where both of these excluded limits once again corre-
spond to real singularities. The periodic nature of this
solution enables us to choose any »n which is an integer,
This solution is also due to Lewis, ® and we shall refer
to it as L solution.

The space—time metric corresponding to the case
of “null” geodesics where 8=90 is given by

ds?=— x'(1 + alnx!)(dx®)? + 241 (dx® dx®)
+ ()2 (@xt)? + (dxh)?), (25)

where a is an arbitrary constant of integration and, de-
pending on the choice of sign for @, we must restrict
x! as follows:
a<0, 0<xl<el/s,
, x 5 (26)

a>0, xl>el/e,

All the excluded limiting values for x! are curvature
singularities. This solution which is due to van
Stockum’ will be denoted by V.,

4. DISCUSSION OF THE RESULTS

Theorems on the solution of the partial ditferential
equation of Hamilton and Jacobi enable us to conclude
that the solutions obtained in the previous section ex-
haust the class of stationary exterior solutions of the
Einstein field equations with whole cylinder symmetry.
We had found that according to the values of the con-
stants of motion on M’ they could be divided into the
categories Lw_, Lw,, LY, and V. In order to present
them in unified scheme we shall turn to an examination
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of the phase space for M’. First of all the dynamics“’

of stationary, cylindrically-symmetric gravitational
fields takes place on the phase space 7*M’ which is the
cotangent bundle of M’. This is implicit in our proce-
dure of starting with the Einstein field equations written
in the form of geodesic equations of M’ and first casting
them into Hamiltonian form. In our discussion the cen-
tral role played by the symplectic structure of T*M’ is
manifest even in the process of integration of these
equations since it is based on the Hamilton—Jacobi
theory. Finally the solutions themselves can be charac-
terized by identifying the appropriate region in the phase
space. For purposes of distinguishing between the four
classes of solutions it suffices to consider a two dimen-
sional submanifold spanned by the momenta P,, P, and
in Fig. 1 we can see an illustration of this situation.
The most crucial constant which decides the class of the
exterior metric is the “energy” constant 3. In particu-
lar 8=1/16 leads to flat space—time, and, as we can
see from Fig. 1, the locus of such points are the two
hyperbolas which intersect the P, axis at +1/4, The
Lw_ solutions are hyperbolae which lie within the “past”
null cone of this figure. Similarly Lw, solutions are
hyperbolas contained in the “future” null cone. The Ly
solutions are represented by the hyperbolas which lie
in the “elsewhere” region, that is, they intersect the
P, axis and there is no distinction between the two
branches in this case. Finally the null geodesics which
are the asymptotes of all these hyperbolas coorespond
to the class V solutions.

CONCLUSION

The virtue of formulating the Einstein field equations
in terms of the harmonic mappings of Riemannian mani-
folds lies in the prominence it gives to the configuration
space M’. We have seen that this prominence is justly
deserved because of the simplicity it brings to the prob-
lems of the formulation as well as the solution of the
stationary vacuum gravitational fields with whole cylin-
der symmetry.
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APPENDIX

The formalism of Sec. 2 includes as a special case
the formulation of spherically symmetric gravitational
fields in the framework of harmonic mappings of
Riemannian manifolds. However, some simplifications
which ensue as a result of this specialization, in par-
ticular the reduction of the discussion of spherical fields
to geodesic motion in configuration space, are not im-
mediate in the way the problem has been set up for
axially symmetric systems. For this purpose we need
to start with a new form of the space—time metric, tak-
ing into account all the available symmetries, It is well
known that the general line element for static spheri-
cally symmetric fields can be written in the form

ds® == B2 at* + A% v’ + 2 (d6° + sin®8do?), (A1)

where A, B are functions of » only. Looking at the
Einstein Lagrangian which is obtained in this case, !! we
observe that the solutions of the Einstein field equations
can be formulated as the harmonic maps f: M — M,
where

ds? =dr? + v (d6® + sin® 0 d¢?), (A2)
are the metrics for M, M’ respectively. In this case
the geometry of M’ is flat and the transformation

A=(a+p)?, B=(a+p)/(a-B), (Ad)
brings Eq. (A3) to the form

ds"=da® - d@. (A5)

As we have restricted our considerations to harmonic
maps which depend only on 7, we are interested in the
geodesics of this two-dimensional Minkowski space with
the affine parameter given by 71, The discussion of the

geodesics is simplified by noting that we have the {ree-
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dom of performing Lorentz transformations on M’. The
coefficients of the space—time metric (A4) contain a, 8
only through the retarded and advanced combinations so
that they are left invariant under these transformations.
(For null geodesics on M’ the resulting space—time
geometry is therefore singular. ) Finally the discrete
symmetry & — 83, 8— « of the metric coefficients shows
that there is no distinction between a- or S-like geode-
sics as far as the resulting space--time geometry is
concerned. Thus it will suffice to consider a single
geodesic which will be a straight line parallel (say) to
the g axis, and its equation can be written in the form

a=1, B=zmr! (A8)
where 3 is an arbitrary constant which measures the
velocity of the particle in M’. If Eqs. (A6) are substi-
tuted into the space—time metric (A1), we find the
Schwarzschild solution where m is the Schwarzschild
mass. The null cone at the origin of M’ distinguishes
between the Schwarzschild and Kantowski—Sachs re-
gions of the solution. The w-axis is the asymptotically
flat region of the Schwarzschild geometry and crossing
the null cone in M’ corresponds to passage through the
Schwarzschild horizon.
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A class of orthogonal polynomials defined by a weight function of compact support is considered. These are known
to satisfy three-term recursion relations. It is shown, under rather weak restrictions, that the traces of powers of
the Jacobi matrices formed from the coefficients in the recursion relations are simply related to Fourier

coefficients of the logarithm of the weight function.

I. INTRODUCTION

Recently! we presented a treatment of a class of or-
thogonal polynomials from the viewpoint of scattering
theory. In particular, a set of sum rules involving the
coefficients of the three term recursion relations which
these polynomials satisfy emerged rather directly. Ex-
perts in the inverse scattering method of solving non-
linear evolution equations will no doubt note the close
similarity to the “trace formulas” which occur in that
method. ? Here we show the detailed connection: First,
the relation throws considerable light on the nature of
the sum rules. Second, this leads to a direct and sys-
tematic method to write down all the sum rules.

In Sec. II we briefly summarize the pertinent material
from Ref. 1. A derivation of the relevant trace for-
mulas is then presented in Sec. III. While elegant and
short, this derivation (at least in the form given) seems
to demand very strong conditions. However, in the
Appendix it is shown by a more cumbersome approach
that the formulas are actually valid under very much
weaker restrictions. Later sections are denoted to the
explicit form of the first several sum rules. As an ap-
plication we then write these out for the case of the
Legendre polynomials.

Il. REVIEW

Here we give a brief summary of the essentials of
the previous work (hereafter denoted as I).

Consider polynomials which are orthogonal with re-
spect to a weight function p(}) with support that is a
finite continuous stretch of the real axis plus, perhaps,
a finite number of real discrete points outside of the

continuum region, i.e.,
dp(N =p’ (N dx, X sh<), (1. 1)
and dp()) =3;p;6(x = X;) dX, X not as above,

It is well known?® that these polynomials ¥(x, n) satisfy
a three term recursion relation of the form

a(e+ 1), n+1) + 00 P(X, #) +aln)v(r, n = 1) = o\, n)
(IL. 2)

subject to the initial conditions

¥, =D =0, ¥(x,0=C=1/[[Zdp(W]"2, (IL. 3)

Here the limits a(«~), b(<) exist and the continuum re-
gion is
b(0) = 2a(x) < A < b(e0) + 2a(x). (IL. 4)
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It proves convenient to introduce auxiliary functions
¥.(z, n) which satisfy Eq. (IL. 2), but instead of the
boundary conditions of Eq. (I 4) they satisfy

im|i(z,n) - 2*"|=0, [z]<1, [z]>1 (I 5)
where
A=b(0) + a(o}z +2z1). (IL. 8)

Particularly important is the function f,(z) defined
through Eq. (II.2) as

f,,,(Z) = >‘¢+(>‘; 0) - b(O)d).‘.(x, 0) - 0(1)¢+(>\, 1)-
(This will be called -the Jost function.)

(11.7)

Basic properties are
(a) f.(2) is analytic within the unit circle except for
a simple pole at z =0;
(b) the zeros z; within the unit circle correspond to
the discrete jump points;

(¢) the boundary value of 7, as the unit circle is ap-
proached from within determines the continuous
part of the spectral function. Indeed,

p’ = a(x) sinb/7C%|f,|?, (IL. 8)
where
z =exp(i0).

(d) Conversely, the continuous part of the spectral
function plus the z; (which are real and |z;|<1)
corresponding to the discrete ); determine f,(z).
We have the explicit formula
I (z ~2)10 (z -2,

M;1-2;2)

o[ (n

[Here I, means the product over positive (negative) z;.]

)=

et

+Z>de'n
zZ

(11. 9)

Some simplification is achieved if we introduce

- _b(n) = b(»)

a(n) = aln)/a(=), Br) R
A= b(=)
=z4+z1l= II.

u=z+z e (I1. 10)
Then Eq. (II. 2) becomes

(L u, 1) = wilu, n), (Ir. 11)
with
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(LY, ) = aln+ Dy, n+1) + B0 Pu, n) + alm)P(u, n - 1).
(11.12)

[Effectively the general problem has been reduced to
the case a(«)=1, b(x)=0,]

Let us also introduce a comparison operator L, de-
fined by

(Lo ) (e, 7) = 9O, n + 1) + %, n= 1), (1I1.13)

We denote the solutions of
LOZ!)«)) :ud)(O)

subject to the initial conditions of Eq. (II. 3) by #‘*’ and
the solutions corresponding to the conditions of Eq.
(IL.5) by 9,

llIl. THE TRACE FORMULAS
Our program is to relate the traces
Tr{L’ - L%)

to various integrals involving the spectral function. The
derivation given here may be regarded as heuristic.
The argument seems to demand very stringent condi-
tions on the approach of a(n) and B(»n) to their asymp-
totic values. However, in the Appendix it will be shown
that the formulas do indeed hold under much weaker
conditions.

Our program (which closely follows Flaschka?) is as
follows: We first demonstrate the relation

{111. 1)

2f2) _osn 1
In ol ~Tr%im[l, - L™
(Here C_; is the residue of f, at z=0.) Then express f,
in terms of p’ by means of Eq. (IL. 9). Expanding both
sides of Eq. (II.1) in a Taylor series about z =0 and
equating coefficients of the different powers of z then
gives the desired formulas.

To prove Eq. (II. 1) let us first find the Green’s func-
tion corresponding to the operator L, i.e.,

(L-u1)G=1, (111. 2)
A straightforward construction? yields
Glu, nym) == b, 1) %}i" ma() , n<m
- Do, n)él)f(ft, m)a(=) , n=>m. (111. 3)
Hence
1 1\ a(=) & lu, m)d,(u, n)
Tr(L— R ul) =-7C 740< 7.
¥, ) Y, n)>
). (11. 4)

To evaluate the sums let us differentiate with respect
to z the Eq. (1.11) for #,. [¢, =(d/d2)$,]. We obtain

LZp*:iiz b, +ud,. (111. 5)

dz
Applying the usual operations leading to Green’s identity

to this and the equation
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Ly=uy, (111. )

yields the relation
du X
EZ_E) lp(u’ n) w»(u, n)

=a(N + D[, N, (u, N+1) = 3, (u, N, N+1)]
+Cf ,/a(w).

(Here we have used the boundary conditions on ¥ and
the definition of f£,).

Now we want to show that in the limit N -« the differ-
ence between Eq. (II. 7) and the same expression with
superscripts zero give no contribution from the upper
limit. To show this we need the asymptotic behavior of
¥(ze, n) and ¥°(u, n). For 1zi=1 this is readily done.
Thus in this case the ¥, are both well defined and are
independent solutions of our equation. Therefore, we
have the representation

(1. 7)

W, m) == [, w - @0, ], (LG
and then the asymptotic behavior
Plu, n) -;—_C—Z—:r [f(2)z" = f(2)z]. (ITL. 9)

However, we would like to use this representation well
within the unit circle. (Indeed to z=0.) Suppose . can
be analytically continued within the unit circle. Then
Eqs. (II.8), (II.9) will hold there. This can be done at
least when a(n), B(n) approach their asymptotic values
faster than any exponential. Therefore, at least in this
case our following derivation is valid. For weaker con-
vergence it can only be regarded as heuristic. In the
Appendix, however, we demonstrate that the formulas
are valid even when the convergence is as slow as 1/%%.

Inserting the expansion of Eq. (I1.9) in Eq. (IIL.7),
doing the same for quantities with zero subscripts, sub-
tracting and passing to the limit N -« yields

o[t 1 ]_ dzff, f9 f9>
r[L-ul_Lo—ul VA

. 4
=~ In{f./f 1}

If now the left hand of the equation is expanded in pow-
ers of 1/u and integrated from u to infinity, we obtain

(II1. 10)

©

1 m_ym
- ZwTr(L - L7,

m=1
Integrating the right-hand side yields
. +(z)f2(zo)
1 ].l'\}—('[r—_— .
z()lf? Fi2Y .z
But f2(z)=1/z, and f.(z,) ~C_ /2.
Therefore, we obtain

NI S ST L) (111 12)
C. met MU

Let us now expand both side in powers of z. Thus
writing
lnzf+(z) — Z‘I ,Ynzn
C 1 n=1

(111. 12)
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and
u_{nz 5 O (I11. 13)

and equating coefficients of 2" in Eq. (III. 11), we obtain
the relations

(111. 14)

N
v, =2 -mar(L - L™).

m=1
Some remarks are in order,
(1) The o,,, are universal and simple. Thus,
Omn=0, m>n,
Omp =0, unless n—m is even, and otherwise,

tn+m=1) (IIL. 15)

-1 (n=-m)/2

Omn=

m-1
(2) The ¥, are simply expressed in terms of integrals

of the spectral function. Thus from Eq. (1. 9) we see
that

1 (7. |a(«)sind’| , ,
C_1—?|ZiIeij4—w'[’ In W dae’, (HI. 16)
From this it follows that
lnﬁi(-z-l=21n(1 -2/2;)=2,In(1=2,2)

C i i
+.2 i In a() sinf’ | exp(-i6’)d6’
2n ), 7C%’ 1- z exp(~i6')°
(1. 17)

Finally, expanding in powers of z and equating coeffi-
cients, we conclude that

a(=} sin’ 46"
C%p’ 8

Y, =lf'cosn6'ln
n ‘n 0

~[z)" = (2,)"]
+Z;I i - i .

(111. 18)
1V. SOME EXAMPLES

It is instructive to look in detail at the structure of
these sum rules.

W r=1

71:0'11Tr(L0—L) (IV. 1)
But o;3=1and Tr(L;- L) =~ 32, B(n),
ie.,

Y ==2,8n) (Iv. 2)

n=0

2)n=2
3= 03, Tr(Ly = L) +9;—2Tr(L%,- LY,
Since 012~ 0,

o2 =1, and

Tr(L%- L% =- 22—_‘31 [o(n) - 1]—5) Fi(n).
n= n=0
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Thus,

%= 5 [ - 11- 35 50 (. 3)
n=1 oo}

3y n=3

o3==1, 0p3=0, 05=1

S vy==Tr(lg= L) +5Tr(l- L),

or using Eq. (IV.1) and the explicit form of the traces:

')’3+71=—5;0 Qz(n+1)[ﬁ(n)+3(n+1)]+_@%@2

(.4
(4) n=4
014 =034=0, 0Op==2, 0y=1

T Y t2% =5 Tr(li-LY

=-‘1ii}{b‘(n) +2(atm) = 1)
n=0

+4[(cPm) a?(n + 1) - 1) + ()% (n)
+d(n+1)B2n) + aP(n + 1)B(n)B(n + 1) }(IV. 5)

(5) We note that in the identities with » odd (even)
only traces of odd (even) powers occur. In particular,
in the important special case that 8(n) =0 half of our
identities are the trivial 0=0, Therefore, as our last
example, we consider B(n) =0 and treat the case n==8.
Then

Or¢ = O3 = 056 = 0,
Ogg=1, 0p=3,
and the identity is

Ys+4v, +5v,=5 Tr(LS - L8)

Ogg==4

=-32 [a¥n+1)-1]

n30

- i {®n+ D[ Pn+1)a*n+2) + at(n+2)

n=0

+ of(n+2)a(n+3)]- 3} (Iv.6)

V. THE CASE OF LEGENDRE POLYNOMIALS

We consider this as the simplest application. There
areno z;. p’=1, a(*)=1/2=C% Thus,

T : ’
Yn:;l;j cosnf’In §1—:£—>d9'
0

_{-— 1/n, n even,
0, n odd. v.1)
The relation of Eq. (IV. 3) is then
1 =
E: [az(n) - 1], (Vo 2)

nsl
which was previously given in Ref. I.

The relations of Eq. (IV.5) and (IV.6) are,
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respectively,

5= )_/{2 An) - 1]+ 4] Py P(n+1) - 1] v.3)
and
1125;[aﬁ(}l+1)-1]+3i{0[2(n+1)[az(n+1)a2(}z+2)

n=1 n=0

+ ot +2) + of(n +2)a?(n +3)] - 3},

If we insert the known form for the coefficients

a®(n) =P/ (%= 1/4),

(v.4)

we obtain relations which can be checked by direct, if
extremely tedious, calculation.

Vi. CONCLUSION

It has been shown that under stringent convergence
conditions for the a(n), b(n) there are extremely sim-
ple relations between the Tr(L{ — L™) and the Fourier
coefficients of the logarithm of the spectral function,
These are summarized in Eqs. (III.14), (III. 15), and
(I11.18). The extreme simplicity of the results suggest
that they are true more generally. In the Appendix it
is shown that the relations indeed hold even if the con-
vergence of a(n), b(n) to their asymptotic values is as
slow as 1/1%,

APPENDIX

In the main text we have found very simple sum rules.
These were proved under restrictions on the a(n),
B(1). The rules very simplicity suggests they may hold
more generally. Here we sketch a proof of this by di-
rect computation.

The essence of the rules found earlier is that there
is a relation between the coefficients of the power se-
ries expansion of In(zf,(z)/C_;) in the vicinity of the ori-
gin and the various traces of powers of L and L,. How-
ever, previously' we found that zf*(z)/C4~1as z—~0
and it is analytic in the vicinity even if a{i) ~,..1 and
B(n) - ,..0 as slowly as 1/1#%. Hence there is a power
series development. We will show the coefficients are
readily computed and indeed are the traces that we

expect,

To find, systematically, the power series of #.(z, n)
[and hence that of 7,{z)] it is convenient to introduce new
variables. Thus suppose we write

a()=1/vValn=Dgln). (A1)

[We will never actually need the g(n) explicitly but will
require that lim,..g{n) = 1. ] Then introducing ¢.(z, »)
by

&, (z, n) =z, 1) /g(n) (A2)
we find that the three term recursion relation is
bz, n=D=[z+z1 - ) g (z, 1) — p.lz,n 1),
(A3)

and f,(z) is given by

() = (0)]e(06.(, 0 = (5, DT (A4)

V(0
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Since ¢, satisfies the boundary condition
lim,..l¢%(z) - z”l: 0, we know that

o.(z, 11)~L A () zmm (A5)
and then
146 = (20 2, AC G < 27 = (0
vV g{iO) m=0
- Z)A“’(m)z"‘”) . (A6)
m=
If we expand f,(z) in the Laurent series
fl2)=2, Cz" (AT)
n==1
and equate coefficients of the powers of z in Eq. (6), we
obtain
=L 104D (- 1) + AV 1)
V2(0)
- g(OBOA () = AV (= 1)]. (A8)
In particular,
C_y = a{=) Vg0 A"(0), (A9)

Similarly, recursion relations for the A" (i) are ob-
tained by inserting the expansion of Eq. (A5) into Eq.
(A3). We obtain

APDG) = g(AW (m = 2) + () AT (n)
—BegA™ (i =1) =A™V (i - 2),

Note that this is ideally suited for an interative solu-
tion. If we know A™(in’) for m’<n we can then find
A 0n).

(A10)

To start the process consider # =0, Then since

A™Gu)=0, m <0, the equation is
AND(0) = g() A (0), (A11)
which yields
AP = T g(i). (A12)
i=n+l
As a special case we have
A(0) = T g(i). (A13)
i1
Then Eq. (9) tells us that
€, = a(=) V(0] ‘ﬁlg(i), (A14)
i
which on using Eq. (1) becomes
C.i=a(®) il = ¢(o0) H (1(00)/ a(i). (A15)
i1 oz(

Some remarks:
(i) The explicit form for g(7) is not needed.
(i) The result agrees with one reported earlier,’

(iii) Our present approach has given us one addi-
tional relation.

Thus comparing (A15) with Eq. (IIL. 16) we see that
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w H 5 9'
a(°°)Ha(W)/a(i):H|zi{exp2~1/ In mzsn,l_ de’.
i=1 i TSy Cp
(A18)

To obtain the higher C,, it is convenient to decompose

A () in the form
ADG) =AM(0)B™ (),

[where therefore B (0) =
(10) becomes

(A1)

1]. The recursion relation Eq.

B (n) — B™ () = K™ (m), (A18)
where
K™ (m) =B (m = 2) = BV - 2)
+ ) BV (m = 2) = B} B - 1) (A19)
with
1 - 2
f(rz)zl—mzl— o’ +1),

[Notice that again we no longer need the explicit form
of g{i)—they completely disappear from the problem. ]

Now if B™ () are known for ' <m the Eq. (18) gives
us B (7). Indeed,
B™(m)= 2, K" (m). (A20)

n’=n+l

Using Eq. (18), we can also slightly simplify Eq. (19)
to

K™ (m) =K™D(n = 2) + f() BV (s — 2) = ) B (m = 1),

(A21)

With the initial conditions B (0)=1, K™(0) =0, B™(m)
=K™m) =0, for m <0 we can now proceed to compute
the higher B™ (m) and K ™ () iteratively.

Before doing so we give the expression for C,,. These
are

C/Ci=dny
with
BNy — 2)
— B =) + B () — _ By, -
d,=B"(M~2) (1) O 8(0) (m-=1)
(A22)
which using Eq, (19) and Eq. (20) yield
d,=BO(n) + K9m)
= 25K (). (A23)

n*={

[The significance of the d,, is that the quantity zf,(z)/
C_;, whose logarithm we eventually will count, has the
Taylor series

ic*(ﬁzl F e ] (A24)

-1 m=1
Now let us proceed to calculate the d,,. From Eq. (21)
K™(1) == B(m)B™(0) = - B(n)

and then
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B"(1) = E B(n", (A25)
n’=n+l
while
dy==2 B =Tr(Ly— L) (A26)
n=0
Similarly, for m =2, we obtain from Eq, (21)
K(ﬂ)(z) :f(n)B("*l)(O B(n) (’1)(
=f(n) Z 1B(n’)
and so
B™(2) = f; fr)+ i} B(n’) Zf) 1li(n”) (A27)
nf=n+l I .
and
dr&/f(n +E B(n) ?13(72 (A28)
But
L8 5 s =37 0 +3(Daw)
n=0 n’=n+l n 0
=2 (1= 0+ D]+ 3 5 ) + (?_/ B(n ))
n=0 n 0
=4 Tr{Li- L3 +3[Tr(L,~- D). (A29)

As a final example to illustrate what happens for
higher m we consider the case 8(n) =0 and m up to 4.

Note that if (n) =0, K" (m) =B (m)=d,=0, m odd.
Therefore, we need only d, and d,. From Egs. {27) and
(28)

> fn,

n’=n+l

K(2)=ftn), B™(2)=

dy :f)f(n). (A30)
n={
Then from Eq. (21)
K@) =fn+1)+fn) 25 fln)
n"n+2
and thus
A=+ 1)+ 5 /) 2 fn?). (A31)
n=0 n=0 n’=n+2

The (n +1) and (n +2) occurring here appear a little
strange—but are just what is needed for 4, to be expres-
sible as traces. Thus,

)_zf(n) b f(n')—Lf(n L f(n')—_zf(n)f(n +1),

n'=n+2 n'=n+l

and since

el = 21
Z_Jof(n) 2_/ 1f(?fl") ——[L/ f(n)} ELf (n),
n= n’=n+ =() n=0
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we have

o o 2 o o
ay= 5+ 0 +3] 5 0 | <35 70 - 5 s+ 1),

=0

Finally, remembering that f(n)=1- a®*(n+1), we
obtain

dy= zi [P +1)-1] +i-f){z[1 - at(n+1)]
n=0 n=0

1 © 2
+4[1-?(n+1)a?(n+2)] +§(2 [a®(n+1) - 1]>

n=0

or

dyi==Tr(L3— L) +5Tr(Ly- LY + [ Tr(Li- L) P, (A32)

Let us now show the expressions for the d, obtained
here just give those in the main text for ¥,,. We have

In(zf,(2)/C,) = ln<1 + f, dmz'")

m=1

Ingd}

Y2". (A33)

3
i
-

Expanding the logarithm in powers of z and equating
coefficients give the 7, in terms of d,,. The first few
are

N =d,
which by Eq. (26) is
n=Tr(L,- L)

di
‘/2:(12——2—-, (A39)
which using Egs. (29) and (26) is
y,=%Tr(Li- LY. (A35)
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Finally we note that for 8(») =0,

Ya=0 (A36)
and
_ . 4
Vo= dy~ )
=—3Tr(L3~ L%+ Tr(Li- LY, (A37)

It is clear that the relations we have here are just
the relations
& q

Vo= 2 =EETr(LT - L™)

m=1

(A38)

of the main text.

One probably should emphasize the great simplifica-
tion which arises from taking the expansion of the log-
arithm of zf,(z)/C_; instead of the function itself.

(i) While both the d,, and 7, are expressible in terms
of Tr(Ly~ L"), the v, are linear in the traces and only
involve even (odd) + for n even (odd).

(ii) The expression for the 7, in terms of integrals of
Inp’ is particularly simple.
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The ! =0 partial wave projected Coulomb off-shell T matrix T,;_, in momentum representation is obtained in
closed form. Problems existing in the literature concerning the half- and on-shell behavior of T, and T, are
discussed and clarified by means of explicit formulas. The remaining derivations in this paper are based on

T., .o We consider the class of N-term separable potentials where the form factors are rational functions of
p? (in momentum representation). We prove that the / =0 T matrix corresponding to the Coulomb potential
plus any such so-called rational separable potential has a very simple form, namely, it can be written in terms
of rational functions and the (simple) hypergeometric function with parameters (1, iy; 1+ iy), where ¥ is the
well-known Coulomb parameter. Explicit analytic formulas are derived for a number of simple members of

the class, the Yamaguchi potential being one of them. In this particular case the expressions of Zachary and

of Bajzer are reproduced who used a method based on the O, symmetry.

1. INTRODUCTION

The nonrelativistic few-body problem is considerably
simplified by the use of nonlocal separable potentials in
place of local potentials. This simplification is justified
by the observation that short-range local potentials can
be approximated by finite-rank separable potentials in
a mathematically well-defined sense. In view of the
importance of charged particles in few-body systems,
the interest in studying potentials consisting of the sum
of a short-range finite-rank potential and the Coulomb
potential is not surprising.'~” Because of the long-range
difficulties involved, often a screened Coulomb potential
is proposed with a very large screening parameter, '~
For the pure Coulomb problem, wave functions and
Green’s functions in coordinate representation are known
in closed form.!?-!® Several equivalent*®* momentum
representation expressions (in three-dimensional space,
p <€ R%) are known for the Green’s function and for the
off-ghell T matrix.*®"?® For the Coulomb plus Yama-
guchi®® potential the off-shell 7 matrix in momentum
representation is known in closed form®® for =0. This
latter is derived using the O, group-theoretic approach
first discussed at some length by Fock, #

As is well known, in conventional (short-range) po-
tential scattering theory the physical scattering amplitude
can be obtained by taking the on-shell limit of the off-
shell T matrix. This is no longer true when the potential
has a long range such as the Coulomb potential; in fact,
the on-shell limit is not defined in this case. Because
this trouble just comes from the behavior of the poten-
tial at large distance, the same fact holds when an ar-
bitrary short-range potential is added to the Coulomb
potential. Nevertheless, it is generally expected that
one also can extract, in such a situation, all relevant
physical information from the off -shell 7 matrix,
Therefore, it seems to be very interesting to have
explicit formulas for off -shell T matrices which de-
scribe the Coulomb interaction plus a rather general
short-range interaction exactly. Once we have gotten
the correct relation between the off-shell 7 matrices
and the physical amplitudes, we could obtain information
about the short-range interaction by comparing the
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numerical values resulting from the theory and the ex-
periment respectively. We have been able to establish
such a relation, and to give a satisfactory justification
for it. This will be reported in detail in a subsequent
paper. %

In the present paper we obtain the /=0 partial wave
projected off-shell Coulomb 7 matrix in momentum re-
presentation T |, analytically, starting from a known
expression for the complete 7', in three-dimensional
p space (unless stated otherwise we work in momentum
representation), Two equivalent explicit formulas for
T, ,.oare given at the end of Sec. 3. Concerning the
half- and on-shell behavior of 7, and of T, |, some
confusion has grown in the literature. As we said above,
the difficulties arise exclusively from the long range of
the Coulomb potential and remain unaltered when an
arbitrary short-range potential is added. These diffi-
culties are discussed in detail in Sec. 4 and clarified
with the help of explicit formulas derived in Sec. 3.

In section 5 we give the general formulas to obtain the
T matrix corresponding to an arbitrary N-term separable
potential plus the Coulomb potential. In Secs, 6 and 7
we derive analytic expressions for a number of off-shell
T matrices corresponding to Coulomb plus N-term
separable potentials (for /=0 only), starting from one
of the explicit expressions for T, ,.0 derived in Sec. 3.
In particular, for the case of Coulomb plus the (one-
term separable) Yamaguchi potential we find complete
agreement with the formula of Zachary® and of Bajzer,®
It should be noted, however, that we apply only special
function theory. Nowhere in this paper do we use the
O, group~theoretic approach of Zachary and Bajzer.

In Sec. 8 we define the very large class of rational
separable potentials. We reveal the general structure
of the explicit formulas for the off -shell 7 matrices
corresponding to any such potential plus the Coulomb
potential. It appears that the hypergeometric function
(1, iy; 1+4y; +), where v is the well -known Coulomb
parameter,'? is the only nonrational function involved.
Moreover, the method to obtain any such 7 matrix in
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exact closed form follows immediately from the deriva-
tions given in Secs. 6—-8.

Finally, in Sec. 9 the results and implications are sum-

marized and discussed.

2. NOTATION

Dirac notation is used throughout. Our normalization
is determined by the use of delta functions as basis states
in momentum representation,

|k =5(p -k);
in the Ith partial wave space
(p|Rl) =k (p = k). 2)

This implies the following basis states in coordinate re-
presentation

(v k)= (1) 2%,

1)

(3)

Cr | Ry =@2/7) %%, (k). (4)
Here the variable % stands for the square root of the
energy,

E=F, (5)

Functions of k will be defined in the upper-half of the
complex k-plane, i.e.,

Im#k> 0, (6)

Generalized functions (distributions) like (1) and (2) may
be defined as limits of functions of k where the appro-
priate limit

Imk— 0 (7)

is taken, cf., e.g., Ref. 12, The partial wave projec-
tion of a rotationally invariant operator A is defined by

(r|A vy = [dx P (X R) (x|A] %), (8)
where x stands for » or p. This implies
= 21+1 A A
& |A[x) =2 —ﬂP,(x'-x)(x’.Aljm. (9)
1=0
In Eq. (9) the infinite sum converges generally not

pointwise, but only in the sense of distributions'® %%

compare Sec, 4.

3. THE PARTIAL WAVE PROJECTED COULOMB
T OPERATOR 7,

In this section an integral representation for T, , is
derived from one of the known expressions for the
complete T_. At the end of the section T, is expli-
citly obtained; the derivations of Secs. 6—8 are based
on this expression for T_, o

Our starting point is the complete Coulomb T matrix
T.. There are several equivalent'’ expressions known
for this function,®~# In particular, Schwinger’s'® deri-
vation, based on the O, symmetry exhibited by the
Coulomb potential, is elegant. Chen and Chen'® give a
fairly complete survey of the work done on two-body
Coulomb amplitudes. In place of 7, the resolvent G, is
given by many authors, but in momentum representation
the explicit expressions for G, and T are related in a
trivial way because one has
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G (E) = Go(E) + Go(E)T (E)Go(E). (10)
Below we mention some useful expressions for 7. We
define the Coulomb potential

V (r)=2ky/7. (11)

Here the notation of Messiah!? is followed. Units are
such that 7i=2m =1 where m is the reduced mass. It is
important to note that the parameter y is energy-de-
pendent, for (recall E =42 Imk> 0)

ky =real const. (12)
Defining

a=p’'-p, q=|a],
we get from (11)

®V.lp)= 2 (13)

Define further
=1+ =B p? - B K
y=x+1)/(x=1),
then T_ can be expressed as
4532
P =K (p* - k)

P 7.09|p)= 35+

x Idlli’(l—ty)'l(l-t/y)'lu (14)

0

The first term of the rhs is just the potential term; see
Eq. (13). Using the integral representation®

£, iy; 1+iys y) =iy ‘{)1 dt vt (1=ty)™ (15)

of this h.f. (hypergeometric function) we get from (14)
, Ry 1(y)
(p'| T (B |p) = W<l+ % ,

with

(16)

I(v)=,F,(1, iv; 1+iy; v) =, F1(1, iy; 1+iy; 1/y). (17)

1t is clear that I(y)/x is invariant for the transformation
x— —x. Thus the sign of the real part of x may be
chosen freely. Choose then

Rex <0,
this implies

ly[<1.
Using well -known properties of the h.f.”® [cf., Eq.
(32)] and writing it in its infinite series representation,
we get the result

1) =1~(=) "D+ D7) +2° & e . (18)

=1 R Y
We can rewrite Eq. (14) in a different form,

Ry 4py? dt 1

el e= et e | Ay Y

This expression is more convenient for the derivation of
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T, ,. According to (8), multiplying Eq. (19) by the
Legendre polynomial P (p' p) and integrating over the
angles yields T, Now we have the well-known rela-
tion between P, and the Legendre function of the second
kind Q,:

Q=5 f daP,(0)(z-a)", (20)

Equation (20) immediately yields the partial wave pro-
jected potential matrix elements from Eq. (13):

pIVelp =255 '<1)Tmf)"2>’ &

Applying Eqs. (8) and (20) to Eq. (19) gives, after
interchanging the order of integration (this is per-
mitted, compare Sec. 4B),

()| py= i—% (Q,(%p,’2> —iyf dt 1v1Q (z))
(22)

T,

with

<p2+p'2— — g dals 'k)). (23)

Difficulties may occur in the integrals of the form

[ dtti”.« - in the neighborhood of t=0. These are dis-
cussed in Sec. 4B. In effect we may assume that the
exponent iy contains a small positive real part. We
simplify Eq. (22) by means of integration by parts. The
integrated term just cancels the first term in the rhs of
Eq. (22); thus we get

1
2ky ood
dat v — . 24
Whether this formula is useful for a derivation of 7, ,
in closed form remains to be seen. In this paper we
use only T, _, for further derivations. This function
follows rather easily from Eq. (24). Because of the

simple relation

<p,'Tc I(k2)|p>

L Qofe) = (1-29, (25)

the integral in Eq. (24) can (in case /= 0) be written in
terms of h.f.’s. Rearranging and collecting terms
yields the final result

/T, olR) |p)= pp, ——D, (26)
D=,F\(1, ty; 1+iy; a’a) = .F\(1, iy; 1+iy; a/a’)  (27)
+,F (1, dy; 1+iv; 1/{aa)) - ,F (1, iv; 1 +iyv; a'/a),
with
=(p=R)/(p+k), (28)
a’ =(p" =R/ (P + k). (29)

A different expression for D is convenient if one wishes
to study its half-shell behavior, i.e., p’— %k thus o’ — 0.
This expression reads

D=T (1+ i) T(1-iy)[(=a’a)?” = (=a’/a)"]
- (1, ~iy;1—=iv; a’a)
=11, iv;l+ivia’/a) + ,F (1, —ivil=iy;a’/a).  (30)

+. (1, iy; 1+iv; a’a)
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Equation (30) can be obtained from Eq. (27) as follows,
Utilizing the relation?:3°

on T =A) .
2F1(>\)u~yV’Z) I“(u)I‘(v )\)( Z)

X L F (0 T=p+n;1—p+2;1/2)

()T =p) (-
T (v -pu)

X oFy (u, 1-v+usl=x+u;1/2), (31)

we derive

F (1, iy;1+iy;2) + ,Fy (1, =iy;1=iy;1/2)

=14+ T +y)T(1=iy)(=z) ", (32)

It is well known that ,F, has a branch point at infinity. *°
In Eq. (27) it is then clear that two of the four h.f.’s
have to be transformed; this is done with the help of Eq.
(32), and Eq. (30) is obtained at once. In Eq. (30), the
singular behavior of D in the neighborhood of ¢’ =0 is
written out in its most transparent form.

Finally, it should be noted that the off-shell =0 T
matrix for the Hulthén potential is known in closed
form.* Because the Hulthén potential can be seen as
a screened Coulomb potential, one could in principle
obtain T_,_, from the analytic formula of Bahethi and
Fuda, by letting the screening parameter go to infinity.
This formula contains hypergeometric functions ,F, and
.F,, however, so it seems that our (more direct) ap-
proach is easier,

4. HALF- AND ON-SHELL BEHAVIOR OF THE
COULOMB 7 MATRICES

In this section we discuss the half-shell behavior p’
— k and the on-shell behavior p’— k, p— k of the com-
plete T, and of all partial wave projected T i.e,, we
consider

¢ 12

(p’| T.(%)|p)
and

(p'| T, ,(#)|p),

for p’— k and for p’—~ 2, p— k. Obviously, k has to be
(almost) real, for p’ and p are real by definition.
Therefore, we take, in this section only, % exactly real
(and positive) and we replace k by &+ ie with ¢> 0 [recall
Eq. (6)], whenever it is important to distinguish between
k and &+ e,

1=0, 1,

A. The functions 7, and 7,
We first concentrate on Eq.

T, is given,

tion that

(19) where the complete
The integral in the rhs exists on the condi-
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Reiy> ~1. (33)

This restriction can be removed by replacing the in-
tegral along the real axis with a contour integrall®

1
) 1 .
24 ———— e
J; Atir(--) = e_zn__lfcdzt"( ).

The contour C begins at (=1 +i5 where the phase of ¢
is zero, moves to the origin, circles it once and con-
tinues to r=1~i5 with 6 +0, Equation (19) and (34)
together give the most general expression for 7. %
Now we take p’ equal to k in Eq. (19)., Then x2 becomes
equal to one, and we see that the resulting integral in
the rhs of Eq. (19)

(Tarer
"0

(34)

(35)

is divergent, because iy is imaginary. In this case (34)
is of no help. The half-shell limit of 7, simply is not
defined. In Egs. (16), (17) this fact becomes manifest;
p’— k implies y—~ 0 (or y— =) and it is well known that
the h.f. has a branch point at infinity, In Eq. (18) the
singularity is made explicit:

lim yi7

y=0

(36)

is not defined. T, , contains the same singularity.
Taking p’ =% in Eqs (22), (23) we get a divergent in-
tegral like (35). In the case ]=0 we also have the more
explicit formula Eq. (30); the limit p’ — & here again
becomes a limit like (36).

Everything we have said about p’ — k applies a fortiori
to the on-shell limit p' ~ &, p— &

Finally, we remark that for p’-- p# k there appear
singularities, too. From Eq. (21) it follows that V_
has a logarithmic singularity, and in Egs. (26), (27) 1t

can be seen that the same holds for T ,_,, because this
h.f. has a logarithmic singularity for the argument be-
coming equal to one, "% Concerning these singularities
we found a discrepancy in the literature (see Ref. 17 of
Ref. 33 and compare Ref. 34}, This discrepancy seems
to have been caused mainly by the mistake of Nutt.**
See the discussion following (47). These singularities
are less interesting so we will not discuss them further

in this paper.

B. The distributions 7, and 7,

In Sec. 4A we considered T and T, , as ordinary func-
tions. Now we want to discuss a d1fferent approach:
We consider T, and T, , as distributions (also called
generalized funct1ons) Distributions are often tacitly
applied by physicists. Such applications are not re-
stricted to the well-known Dirac delta function/distribu-
tion. For example, the Coulomb potential in momen-
tum representation can only be ohtained with the help of
distributions. Straightforward derivation of Eq. (13)
from Eq. (11) goes wrong because the Fourier trans-
form of Ve(r) yields a divergent integral. As is (im-
plicitly or explicitly) done in all textbooks, one mul-
tiplies by ¢™¢" and takes the limit 40 after the integration
has been carried out; this procedure easily yields Eq.
(13) for {p’| V.| p).

Because there are several types of distributions
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(see Refs. 26, 27 and references quoted there), we

ought to specify the particular one we are going to apply.
The distribution appropriate to our purpose is in fact

the same as studied by Herbst.* According to Herbst the
pure Coulomb S matrix, usually written

(kS k)= Temo(wa(k'z k2)< 1k ﬁ)_b' , (37

is undefined as it stands because it is not an integrable
function. Furthermore, any extension is unique only up
to a distribution with support at k’ =k. Herbst proves
that there is at most one unitary extension (in the sense
of distributions) of (37) to all k’ and k. This extension
is just given by the substitution

A<k R\ o lim(1—kr. k)i, (38)
240
This means that S, is a distribution, defined by
a T __2:_ 2ioqg(k) ’ 2 B2
(K |3, [)=1im Lo e fs ks (k2 - k%) (39)

R

_A/.A nel-gy
< (KRN e,

where (k’|f) is a continuously differentiable and square
integrable function. The so-called test functions f be-
longing to this type of distribution are dense in L%(R%).

Analogous to Herbst we define the substitution

(+« < )" —— 1im (s - 2 )™i7, (40)

n: 0
We apply (40) in every situation where iy appears in the
exponent. It is important to note that this has nothing
to do with the fact that 7y itself contains a small real
part when % contains a small imaginary part according
to (12). Remark that there should be, in this respect,
no distinction between a repulsive force and an attractive
force. Indeed, there is no distinction because (40) is
not essentially modified when y is replaced by —y. The
limits € 4+ 0 (¢ occurring in % -+ie) and 40 are taken in-
dependently, the lallev after the former. There is an
important difference between (38) and (40) as we use it
for T, and T_ - In (38) the singularity is worse than a
pole wh1le the singularities in 7 and T _, are much
weaker than poles; in effect they are qulte harmless.
Therefore, the corresponding test functions are cer-
tainly dense in the Hilbert space of square integrable
functions,

Applying (40) to Egs. (16), (18) [or to Eq. (19)] we
see that the half- and on-shell T, are exactly zero.
From Eq. (30) it is seen that the same fact holds for
T. ,,. This is so because

c

D=, iy

Iimlimlim(p k lg) =0
ns0 p-kes0 p+k+l€

1)

Obviously, the second and the third limit may be inter-
changed. Finally, in Eq. {23) z becomes equal to

(p? +p'/@2pp") when p’ —~ k or when p’'—~ k, p— k, and
in Eq. (22) the Legendre function @, then becomes a
constant with respect to the integration variable ¢, the
integral becomes elementary, and the half- and on-shell
T, , are exactly zero for all .

In all other (nonsingular) points convention (40) makes
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no difference whatsoever, In conclusion we may say
that 7, and 7, , are only altered in the on- and half-
shell pomts, where they were not defined before, and
in these points they become exactly zero.

Convention (40) is of considerable value because it
simplifies the evaluation of our integrals, while we still
know what we are doing. Interchanging the order of
integrations, as for example has been done to derive
Eq. (22), is now justified with the help of (40). Because
all occurring integrals are absolutely convergent, the
theorems of Fubini and Tonelli may be applied® and
thus the correct evaluation is easily performed.

C. The operators 7, and 7 ,

In this section we consider 7, and 7, as operators
(defined in the corresponding H11bert spaces of square
integrable functions). They may be defined in terms of
the resolvents

Go(E) =(E~Ho)™,
G (E)=(E~H,=V )?,

(42)
(43)

where H, is the kinetic energy operator. These defini-

tions are

G =Gy +GoT.Gyy G, ,=Go,+Go,T, Go s (44)
where the energy-dependence has been suppressed.
Alternatively, they can be defined by the Lippmann—
Schwinger (L —S) equations

TAE)Y=V_+V G/{E)T _(E), (45a)

TC,,(E): Vo +V,. .G Z(E)Tc [E). (45b)

It is essential that E is not in the spectrum of the Hamil-
ton operators H, and H,+V_, for in that case that re-
solvents are not defined. For E not real positive, the
kernels of the L—S equations are of Hilbert—Schmidt
class if the potential satisfies certain conditions.'® This

guarantees that the L—S equations have unique solutions
for these potentials. Even for the Coulomb potential, the
kernel V_ G, AE) is of Hilbert—Schmidt class (provided
E is not posmve) and therefore the solution T [(E) of
equation (45b) is unique.

Writing the operators in momentum representation
gives the matrix elements (p’| 7 (E)ip) and (p’| T, LB 9.
They can be considered as functions of the monenta and
of the energy. If the potential has short range (in a
certain well defined sense), it is known that these
functions are meromorphic in the complex E-plane, cut
along the positive real axis. Besides bound-state poles
(cf. Ref. 32) other poles can occur. The cut 0<E<
is called the unitarity cut. The limits at the upper and
lower rim of the unitarity cut exist if the potential has
short range. As we have seen, the limits 2— p and
E— p* [ef., Eq. (5)] of the Coulomb T matrices do not
exist. These additional singularities, characteristic for
the Coulomb potential (and probably for other long-range
potentials), are of the type (p=£)i", (p’=£)i". These
singularities are clearly integrable. So if we consider
T.1f), where [f) is a Hilbert space vector,

(p"| T () !f>=4£3dp @ | TPy (plf),

we get no trouble at all in this integral because <p)f>,
being square integrable, is locally integrable.3® The
value of (p’| T (¥*)|p) at p=% is here unimportant,

(46)

Strictly speaking, the half- and on-shell points make
sense only for the matrix elements, not for the opera-
tors. So we may say equally well that the half- and on-
shell values of 7 _and of T considered as operators,
are irrelevant.

¢, 1

D. Summary and discussion

We can summarize the discussion of Secs, 4A—4C as
follows, When 7', and Tc,l are considered as

functions not defined 2
distributions, their half- and on-shell values are {exactly zero),
operators irrelevant S 47

In this connection it is useful to remark that in the
literature considerable confusion has arisen about the
half- and on-shell Coulomb 7 matrices. West* finds
exactly zero for the on-shell 7,. He adds a physical
interpretation: (p’| Tl p) may be interpreted as the
probability to scatter a free state denoted by |p) into
the free state {p’!. This probability should indeed be
zero because in practice one never has a free state
when the pure Coulomb force acts. This is due to its
long range. Nutt®® obtained zero, too, but his derivation
is wrong as was shown, e.g., by Nuttall and Stagat.>®
Shastry and Rajagopal,® following Nutt, also found zero
for the on-shell partial wave projected T, ,. Most
authors obtain the branch-point smgularmes (of T, only;
to our knowledge T , is not known in explicit form),

The result (47) apphes as well when an arbitrary short-
range sepavable potential is added to the Coulomb po-
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, tential. The proof of this statement follows easily from
Eqgs. (48)—(58) given in the next section. We conjecture
that (47) will hold also for the Coulomb potential plus an
arbitrary (suitably defined) short-range potential. This
can be expected because in the Fourier transform a
neighborhood of the point p=k is related to a neighbor-
hood of the point v = (in coordinate representation).
Furthermore, only the tail of the potential is important
for the behavior of all relevant functions at large dis-
tances. Explicit examples of such 7 matrices corre-
sponding to Coulomb-like potentials are given in the
following sections,

We may understand (47) as the formal solution of the
T matrix problems., However, concerning the physical
interpretation more has to be said. This will be done in
a forthcoming paper.? Compare also the work of Tay-
lor®% %% and of Marquez.*
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5. THE TOTAL 7 OPERATOR

Let the potential V be the sum of two potentials V_ and
V_ which are not specified for the time being,
V=V +V_. (48)

In the Gell-Mann—Goldberger two-potential formalism*2
it follows that the corresponding total T operator can be
written®”

T= TC+ Tcs, (49)

where T is the T operator corresponding to V,_ [cf., Egs,
(44), (45)] and T is given by

T, (E)=[1+ T (E)G,(E)} t, (EM1 + Go(E)T (E)],  (50)
where the operator ICS(E) satisfies the equation
t(E)=V +V G (B, (E). (51)

The resolvents G, and G, have been introduced already
in Egs. (42), (43). The orbital angular momentum pro-
jections of the operators occurring in Egs. (48)—(51)
satisfy these same equations,

Now we specify the operators V_ and V.. Let V_be
the Coulomb potential [given by Eq. (11) or (13)] and let
V_ be an operator of finite rank N (also called an N-
term separable potential), which works only in a sub-
space corresponding to one particular value of the orbital
angular momentum /,

N
Vs:'?—/\l ‘gi>7\i<gi" (52)
In Eq. (52) the projection operator projecting onto the
Ith partial wave space and the corresponding subscripts
[ are suppressed. The same is done in the rest of this
section. The X, are real numbers in order that V_ be
Hermitian. Time reversal invariance requires that
{plg,y and {7l g, are real functions of p and r, re-
spectively. It is well known that the T operator T, cor-
responding to the separable potential V_ is separable
itself and may be written

N
T(E)=~ 2. |g)7,,(E){g]- (53)
i, Jj=1
Here the NX N matrix 7 is defined via its inverse:
(THE)),; = (AN, + (g, | Go(BY| g, (54)

where A is a diagonal matrix with elements ,5,,. Now
T (E) is the unique solution of the equation

T (E)=V_+V Go(E)T (E). (55)

Also Eg, (51) has a unique solution, The uniqueness
follows almost trivially from the fact that V_is of finite
rank. Because of the resemblance of Eq. (51) to Eq.
(55), we can write down the solution of Eq. (51) at once:
All we have to do is replace G, by G_in Egs. (53), (54),
Thus in terms of the Coulomb-modified (energy -depen-
dent) form factors |g¢(E)) defined by

| g5(E)) = (1+ T (E)G,(E)) | g,)

we obtain our final result for 7, lcf., Eq, (50)],

(56)
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T (E)=- 2 |gs(E) 7 (E)g(E)],

i, j=1

(57)
with
(7e(E)F = (A, +(g,|G(B)|g, . (58)
Equation (44) and definition (56) imply the useful identity
GolE) |g5(E)) =G (E) | g,). (59)

It is clear from Eqgs. (49), (56)—(58) that the total T
matrix has been obtained in closed form, once we have
derived explicit expressions for (plg¢) and for (g,1G |
gj). This is what we are going to do in the next sections,
for some simple form factors |g,) in 1=0 partial wave
space.

6. THE COULOMB MODIFIED FORM FACTORS (pige)

From now on we consider only the case /=0 and we
suppress the subscript [ throughout. The form factors
{plg) are supposed to be rational functions of p?>, The
simplest rational function that is physically acceptable
as form factor is the Yamaguchi® one

1
<p‘gﬂ>5\/2/ﬂ P2+Bz . (60)
Differentiation with respect to the parameter 8 yields
(apart from a trivial factor)

(Plgss)=v27 G;%E‘ZF . (61)
In coordinate representation one has

(r|gs)=e=pr/v, (62)

(7| ggs) = e=Br/(2B). (63)
We obtain the Coulomb-modified form factor

(p|gglky=(p| Q+T (B)Go(¥)| g9 (64)
in closed form with the help of Egs. (26), (27), and
(15). The result is a double integral of the type

« N 1
L dp'J’O dt - F
1 1 1 1

8 (1—la'(z - 1-ta’/a * 1-i/(a’a) - l“t“/”')’ (65)

where as before a = (p=k)/(p+E), a'=(p' =)/ (p + &),
[Egs. (28), (29)]. The four terms of the integrand in
Eq. (65) are taken two by two; the integrand then appears
to be a function of (p’)?. Interchanging the order of the
integrations (this is permitted according to Sec, 4B),
one easily performs the integration [dp’. The remain-
ing integral [d¢ is again an h.f.. The actual derivation
is given at the end of this section. In advance we give
here the final result

(plgyk)y= FiRETEIE b [F, (Ba) —F,-,(B/a)(]és)
where
B=(B+ik)/ (B=iR). (67)
In addition, we introduced here the notation
F o (2)=,F (1, iv; 1+iy; 2) (68)
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which we shall use from now on in this paper. Equation
(66) can be converted into [e.g. with the help of Eq.
(85)]

cf{p2 1 m
(pley(k?))y= 55 =il 15

X(Lk (1, iv; 2 +iy; Ba)

p+k

ﬁ+

£, iy 241y, B/a)) (69)

In Eq. (69) a result of Zachary® and of Bajzer® is re-
produced. [Note the misprint in Eq. (49) of Ref. 6; the
argument (Bg)™ of the h.f. mentioned there should be
B/q (in our notation)]. The h.f.’s occurring in Eq. (69)
differ from the h,f, in (68) with regard to their third
parameter. More generally, we meet in this game
several different h.f.’s which all have one common
property, i.e., they are of the type

H10, p=1+iv;v+pu =1+iy;2), A, p, v=1, 2, -
(70)

All these functions can be expressed in any one repre-
sentative of the class (70) plus rational functions of z.
This can be proven with the help of their integral re-
presentations.?® We chose already ,F;(1, iv; 1+iy; 2)
as a simple and convenient representative [see (68)].
This has the additional advantage that it facilitates the
comparison of different expressions for the same ob-
ject, such as in Eqs. {66) and (69). Therefore, F,, will
be our standard hypergeometric function throughout this
paper.

The derivative of the standard h.f. F,, can also be
written in terms of ¥, and rational functions. The
following equality is easily established:

d iv{ 1

2 =Z( -F,0). (1)
Utilizing (71) we obtain from (66) by differentiation with
respect to 8 [cf. (61)]

2 ky/B
Pl =277 ((Bzﬂf)z FFA(E+ 7
1+ky/B R

- (P A1, (B0 - £, (B/a)). (72)
The rest of this section is devoted to the derivation of
Eq. (66). The reader who is not interested in the details

of the proof can immediately go on to Sec. 7. We cal-
culate the integral in the rhs of the following equation:

(p,z +52)(p,2 - kZ) .

(73)
Substitute for (pi T,|p’) Egs, (26), (27), utilize the in-
tegral representation of the h.f. Eq. (15), and inter-
change the order of the two integrations, then one ob-
tains

Pl T0IGo(09) | g9 = V277 2 f dt 7

(| T.UM)Go(F) | g5) = ~ V277 J ap'pr? ~2LLE)

f __app
WE+ (P2 -8
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1 1 >
X (1—-ta(p’-k)/(p'+k) L—ta(p’ +k)/ (p'~F)
+ (idem, with p— —p thus a— 1/q). (74)

The integral [dp’ in Eq. (74) can be simplified utilizing
the variable x defined by

x=k(+ta)/(1-ta), (75)

where Im x > 0 holds because Im %£> 0. This integral
then appears to be an elementary one; we get

s ~4kla = ap’p’?
jo dp' +-+in (14)= A—ta) JO e+ B = (=)
-4 kila in/2
=t G=i(p-erm © 1O
From (75) we have
B~ix = (8~ik)(1~1Ba)/ (1~1a), 7

k+x=2k/(1-ta),

so that the factors (1-{a) occurring in the integral [di---
drop out, and this integral appears to be again an h,f.
-1 according to

! 1 1 . .
fo y—ry =175 (1, 1+iv; 2 +iy; Ba). {78)
This h.f. is reduced to the standard F,, by means of
. . iyz
N = v M = -+
Fo(2)=,F(1,iy; 1 +iy; 2)=1 T+
X F (1, 1+idy; 2+14y, z).
{79)
Performing all this in Eq. (74), we get the final result
- =27 iy
2\ /> 2 R, o —_——t
<P|Tc(k )(’o(k)|g5> —P(B_ik)z 1+ar (80)

xla ,F (1, 1+iy;2 +éy; Ba)=1/a ,F,(1, 1+iy;2+iy; B/a)

BZ+ k2 Fiy(B/(I)]a (81)

Equation (81) proves Eq. (66).
7. THE IN-PRODUCTS {giG, lg’

In this section we obtain analytic expressions for the
in-products (g, G_lg,) occurring in the T -formula,
cf. Egs. (57), (58). The operators V. and T, are fixed
once we have fixed the N form factors 1g,), i=1,...,N
{plus A, and the energy, of course), We suppose that
these form factors are of the type (60) and/or (61);
their parameters 8 are possibly different. Because
“cross products” (g,1G_lg,) with [ +j occur, we have to
calculate three different expressions, namely,
(8a1G.189 s (£4alG.igs), and (g, G 1g,) where @ and
B are independent parameters. From these three, all
possible combinations can be made. Obviously this is
sufficient to obtain 7' in closed form [in combination
with Egs. (68) and (72)].

The derivation of (g1 G_|g,) is given at the end of
this section. It has to be noted that one could start with
Eq. (66), because from Eq. (59) one has the identity

(816 (B g,y =(g,| Go(B?) | g5(k?)) . (82)
We obtain
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(1, iy; 24+iy;AB)

(gol Ces) = TN e Y
with
A=(a +ik)/(a=ik), B=(B+ik)/(8-ik). (84)

Taking o =8 in Eq. (83) we reproduce the result of
Zachary.® Utilizing the relation
1

ey £(Y, dy; 2+iy; 2)=1/2+(1-1/2)F (z), (85)

Eq. (83) can be converted into an equation where F,, is
the only nonelementary function,

-1
)= (@ +B)a +ik)B +ik)

<gu'Gc(k2)igﬁ

2ik
R s R
Differentiation of Eq. (86) with respect to a, 8 and
utilizing Eq. (71) yields the final results

P 1
<gaa} (JC(k ) ‘g3> = 2ala ¥ B2 (aZ + B9
a-+ky 2i k(o +ky)
T ala+B)a+ik)(B+ik) (o ?+F) T a (o’ +ED)3(BEED) F,(AB)
(87
and
iia a+aB+ R+ +ky(a+p)
Eael Ol 200) = 3 Ba By (@R (B 1)
_ (@ + k)@ +kY)
aBla +B)a+ik)(B +ik)(a®+ k) (B + k)
2ikla + kY)BTEY) p (4 (88)

- O(B(az+k2)2(ﬁz+k2)2

Now we give the proof of Eq. (83), or alternatively of
Eq. (86). According to Eq. (81), we may write

<ga| Go(kz) Tc(kz)co(kz) |g3> = fm ap ([72 T 012)(1)2 _ kz)

1

26 iy f o1 1
Ko (24 —
ap B2+kJ, dit <1—lB(z 1—[B/a>' (89)
Define the variable y,
. 1+1B
y=h 1-78° (90)

interchange the order of the two integrations (cf. Sec.
4B) and recall from Eq. (28) that

-1/ a=~4pk/(p* - ¥, (91)
a+1/a=2(p*+E3/(p* - ¥, (92)

then one arrives at the following formula which shows a
strong resemblance to Eq. (76):

(Gl TG | £2) = T
d/ 1 dpp®

(93)

X iy

IB)Z (pZ +a2)(p kZ)(pz_y
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So this derivation runs along the same lines as the deri-
vation of Eq. (66) in Sec. 6. The integration [dp gives
in analogy to Eq. (76) a factor (a - iy) that can be written

a -iyv=(a ~ik)(1-tAB)/(1-B). (94)

The factors (1~¢B) cancel and one obtains

(ga] Gol)T (B)Go(#®) | £) = (o lkz)k()ﬁ;—-zk)zj; l:AB’
(95)

With the help of Eqs. (78), (79), and (82), Egs. (83) and

(86) follow easily from Eq. (95).
8. 7T MATRIX FOR COULOMB PLUS ARBITRARY
/=0 RATIONAL SEPARABLE POTENTIAL

We call a potential of the form
N
= 21|g1> )\i<gi"
i
where the form factors lgi) in momentum representa-
tion, {p{g,),
1, are real rational functions of p?,
2. are zero at infinity, (96)
3. and have no poles on the positive axis 0 < p* <,

a rvational separable potential. Any such form factor
can be written (for some v=1, 2,..:)

_ Pp?)
<p'g‘8’>=(p2+ﬁf)(p2+6§)---(p2+e§) ©7)

where P is some (real) polynomial of degree smaller
than v. Its realness follows from the fact that the form
factor is real. The denominator of the rhs of definition
(97) is real, too, but the f’s may be complex. They can
and will always be chosen such that they satisfy

Reg, >0, n=1,..., v. (98)

These parameters 8 need not all be different. The
notation in definition (97) is such that the symbol {B}
stands for (8;,..., B,). In (61) we had the particular
case v =2, We took 8, =8,=5 and the polynomial P was
taken constant there. Cur potential is built up from N
form factors {g,), i=1,..., N. Each form factor has
the form (97), but possibly with a different set of p’s,
e.g.,

Bi,l, Bi,z’ R Biv“i

This more complete notation is cumbersome and would
not clarify our formulas so we will not use it. We sup-
press the index i when the deal with the general form
factors (97).

for each i=1,..., N.

>

Recalling the discussion following (65), it becomes
clear that we need in effect integrals of the type

w 8

| apP®?) L (p° + 87 (99)

Quite a lot of such integrals are known in closed form.
Moreover, the general structure can easily be found,

In this way one can derive the desired formulas for the
{(plge)’s and for the (gl G_lg)’s. This will be done at
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the end of this section. We give the final results here

in advance:

<mﬁﬁmwmmﬂ+§amagnﬂm»amwm
(100)

and

<g(0!] | Gc(kz) ’g(ﬂ]> =Roo+ i Z‘/[cmnl;‘i‘/(“lm‘Bn)’

m=1 n=1
where as before a={ p - k)/(p + &), and in analogy to
Eq. (84) [cf. Eq. (120)]

(101)

(102)
(103)

A =(a, +ik)/(a, -ik),
B =(8,+ik)/ (B, - ik),

m:l, 2, cooy by

n=1,2, ..., v,

R, and R, are rational functions of &k, ¥, By, «.., B, %
Ry, and R are rational functions of &2, v, B;, .., B,
Qpyooey Oye

The T matrix corresponding to a rational separable
potential plus the Coulomb potential is given by Eqs.
(49), (57), (58) and (100), (101). The important point is
that, apart from rational functions, only the h.f. ¥
shows up in the final expressions for 7. The arguments
occurring in F,, can easily be found. They are ex-
clusively defined by the poles of all form factors involved
(and by % and p of course), as can be seen from the Egs.
(26), (27), (97), (100)—(103), and (120).

The remaining part of this section is entirely devoted
to the derivation of Eqs. (100) and (101). The proof of
these equations is in fact a generalization of the proofs
given in Secs. 6 and 7, respectively.

We start with the integral

$
(S)IEfowdpﬁzn(Pz'*Bi)'l, s=2,3,4,--, (104)
n=1
where
ReB,>0 forn=1, 2, ..., s. (105)
The following result holds**
s
()] ;lps(;sl, ceey B) T1 (B, +B)". (106)

m<n=1

Here P is a symmetric homogeneous polynomial in the
variables (8,...,8,). Its degree is 3(s-2)(s~3), but the
highest power of any one of the 8’s is s~3 if s>2, and for
s =2 this power is zero. Explicitly we have for the first
three polynomials

P,=P,=1, (107)
P4231 +ﬁz+ﬁ3+B4u (108)
With the generalized Yamaguchi form factor
L
(pla) = IL(@*+ 87, (109)

which is a special case of (97), we get in the same way
as in Sec. 6

Ldttira
(1-ta)?

4%y
TP

(P| T ()G (F) | gy = =
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© dplplz
), GG R (PR
+ (idem, with p— = p thus a— 1/q).

(110)

As before the variable x is given by x/k2= (1+ta)/(1~ta),
where Imx>0 holds because of Im%>0. Application of
Eq. (106) gives for the integral [dp’ in the rhs of Eq.
(110) the expression
in
4k

(1 - ta)P,, (—ix, =ik, B1,.00, By)

X Br=ix) (8, —ix)(B; — i) - - (B, — i) By + B3) -+ (B T B,)
(111)

where the polynomial P, , contains at most terms with

%!, It contains no terms with higher powers of x, In
analogy to Eq. (77) we have
B, —ix=(8, =ik)(1 =taB )/ (1-ta). (112)

Multiply numerator and denominator of expression (111)
by the factor (1-ta)®. The polynomial P, , then becomes
a polynomial in the variables (ia, &k, B, ..., B,), and
the numerator contains further a factor (1-tg)?. The
denominator becomes a product of the factors (1 ~taB))
and of the factors (8, - ik)*(8, +8,) with m <n=1,

In the rhs of Eq. (110) we see a factor (1-fg)? in the
denominator, so this factor cancels. Equation (110)
then simplifies considerably; we get

<P| Tc(ka)Go(kz) lg( 3)>
1
= (B, = k) <+ (B, = iR)*(By + By) -+ - (B, L + B)

By ([t et Pytay ks By, ..., By)
ip J, (1-taBy)---(1~taB)

+ (idem, with p— —p thus a— 1/a).

(113)

For v =1 the polynomial P, is just 1, and Eq. (113)
reduces to Eq. (80), apart from a factor v2/7 .

The denominator of the integrand in Eq. (113) can be
written in partial fractions. Then we get a sum of v
terms as follows:

v v
(1~ taBY*= 2. P./(1=taB,), (114)
n=i n=1
where the P/ are certain polynomials of (ta, B,,..., B).
Now we know?®
1dtt”'1 £__ 1 (1, x+iv; x+1+4y; 2)
1—tZ_)\+i'}’2F1 ,)\ tYs s 2,
[¢]
x=0, 1, R
(115)
Furthermore, iteration of Eq. (79) yields
. el .
F, =1+ Yz cos 4 O £ l__yz .
17(2) 1 +i'}’ + A - 1+ i')/ )\+i‘)’ ).+ir(z)’
(116)
recall from Eq. (68) the notation
Fop(2)=,F (1, X +iy; A +1+iy; 2). (68)
This implies that the integral
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[ dtt7(ta)/(1~taB)

can be written in terms of F (aB,) plus rational func-
tions, for x=0, 1, --. ., The same holds then if the
factor ({a)* in the integrand of (117) is replaced by an
arbitrary polynomial of ¢a, like we have from Eqs. (113),
(114). Applying all this to Eq. (113) we get the result

117)

(DI TGo) [ g1) =70+ 537, &

x |F,(B,a)-F,(B/a)l, (118)

where 7, and the 7, are rational functions of (p?%, &, v,
Biyoo.5 B,). They are functions of p* (and not only of p)
because {p|T G,|g) is even in p.

Now that we have evaluated this expression where the
form factor is given by Eq. (109), it is only one step
further to prove Eq. (118) for a form factor that is an
arbitrary rational function of p? [see definition (97)],
Write any term p* occurring in the polynomial in (97)
as

por=pP2 (P + B - 8D). (119)

The term containing the factor (p®+ 8?) is then reduced
by dividing that factor out. Iteration of this procedure
reduces the exponent to zero, so any rational form
factor can be reduced to a sum of form factors of the
type given in Eq. (109). Therefore, Eq. (118) holds for
an arbitrary rational form factor, and Eq. (100) has
been proven.

The proof of Eq. (101) which we shall give now is not
essentially different in structure from the one just
given for Eq. (100), With the form factor

(Plgiap = fz (P> +a?)?, (120)
we have [cf. Eqs. (118) and (15)]
1oy | GV T UIG ) 1) =700~ 2 [t [ =dp
X P %) 7 i
(P =Ep*+ad)--- (p°+a2) p
(121)

( 1 1
% 1-iB.a - 1—tBﬂ/a

Here 7y, is a rational function of (&, v, a_, 8,) with
As in (90) define

m=1,..., pyn=1,..., v.
y,=k(1+(B)/(1-tB), (122)
in terms of which Eq. (121) reads
<£.’(a} I Go(kz) Tc(kz)Go(kz) l g(3}>
N T -
= ¥oo T 4iky Z:;/ JO di G.TlnB_")E
« I i dpp®r, (%) )
. W= -y +a)) - (PP +al)
(123)
Utilizing
a, ~iy,=(a, —ik)(1=1A B )/ (1~B), (124)

and recalling the discussion following Eq, (110), one
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finds that all factors (1-¢B) cancel. The denominator
of the integrand in the integral [d/ then contains only
factors (1-(A K.} and other factors that are constant
with respect to the variable of integration f. The pro-
duct of these factors can be written as a sum by means
of partial fractions just as in Eq. (114),
u 1 n yal
rl 1— AMBH—El—lAmB" ’

(125)

m=1 m=1
where the P; are polynomials in ({B,, A,,..., 4). Thus
we get again integrals of the type (117). All these in-
tegrals are then transformed into rational functions of

(Ry ¥y 03524+, @,y Biy..., B,)and the h.f.’s F, (A B),
Then the same result is valid if one takes arbitrary
rational form factors (g,,! instead of the form factors
of Eq. (120). Finally, for G, the same holds as for
G,T,G, according to Eq. (10). This completes the proof
of Eq. (101),

9. SUMMARY AND DISCUSSION

We discussed and resolved the half- and on-shell
problems which occur in the 7 matrices (in complete
three-dimensional space and in the partial wave spaces
=0, 1,-.-, respectively) of any Coulomb-like potential
V=V_+V_ where V_is an arbitrary short-range sepa-
rable potential (Sec. 4), In Secs, 5—7 we obtained
exact explicit formulas for off-shell T matrices corre-
sponding to several Coulomb-plus-rational-separable
potentials (for =0 only). To this end, we first derived
In Sec. 3 the pure Coulomb T, ;.0 from a known expres -
sion for the complete 7', in three~dimensional space.
Equations {26), (27), and (30) give two equivalent ex-
plicit formulas for T, ;.0 Finally, in Sec. 8 we derived
a general formula for the off-shell 7 matrix correspond-
ing to any member of the very large class of potentials
consisting of the Coulomb potential plus an arbitrary
rational separable potential, as defined in (96). Apart
from rational functions, the final expressions |Egs.
(100) and (101)] contain only the h.f, & (1, iy: 1 +iys3-)
where y is the well-known Coulomb parameter, 2

As for the physical relevance of the obtained formulas,
we like to discuss some important points.

In scattering experiments with charged particles one
often deals with the combination of the Coulomb interac-
tion plus some short-range interaction. For example,
nonrelativistic models for proton—proton scattering have
a short-range potential built in to account for the strong
interaction, the Coulomb potential taking care of the
charges. The strong interaction here is almost com-
pletely unknown at very short distance (<1 fm), so one
looks for a phenomenological fit. The model potential
may then be (partly) local or nonlocal (e.g. separable);
often one takes the sum of a local potential (for the
longer distances) and a nonlocal separable potential
(for the short distances). Moreover, as we said already
in the introduction, any local short-range potential can
be approximated by an N-term separable potential in a
mathematically well-defined sense. This explains and
justifies our interest in a general kind of separable
potential.

Due to the long range of the Coulomb potential, diffi-
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culties occur in the theoretical description of the scatter-
ing. As we said before, the physical scattering ampli-
tude is (in conventional short-range potential scattering
theory) just the on-ghell T matrix, apart from a simple
factor. This cannot be the case in long-range potential
scattering theory, because the on-shell limit is not
defined then, as is known (compare Sec. 4). We repeat
that this trouble is unaffected by any short-range poten~-
tial; it is only the Coulomb potential that generates the
problems.

As a way out of these problems it has been proposed
to screen the Coulomb potential; eventually this screen-
ing is then removed by letting the screening radius go to
infinity.!#~ .4 Since some time this approach can be
interpreted in a rather satisfactory way*** at least for
two-particle scattering. In practice, of course, one
always has screening at some very large distance. But
even then it could be questionable whether one is allowed
to apply conventional short-range scattering theory; the
range of the potential is (very) large, though not infinite,
This is a delicate question. Moreover, the screening
approach is hampered by the fact that the scattering
formulas (7 matrices and the like) are not known analyt-
ically in general, and they are much more difficult to
obtain. Screening can also be applied as long as it
appears useful in singular expressions (cf. Refs. 7, 47,
48), This is implicitly done in the application of the
on-shell Gell-Mann—Goldberger*? two~potential formula
to Coulomb -like potentials (cf. Ref. 6). The long-
range troubles have often caused inaccuracies and
inconsistencies in the past. In Sec. 4 we mentioned a
few examples of such inconsistencies we found in the
literature. Here we give some more, The Coulomb
scattering state is often written (e.g. Refs. 17, 7)

k) =1 +G (R22i)V)|k), (126)

where G_ is the Coulomb Green’s function, Although the
formula analogous to (126) for a short-range potential

is correct, (126) is at least inaccurate because the
limit of G _(k®+ ie) for ¢~ 0 is not clearly defined. Re-
lated to this we have the equation (see, e.g., Refs. 1,
21, 49)

P T e =(p" |V, |p+), (127)

This equation is known to be correct when V has short
range, but it is inaccurate, to say the least, when V is
the Coulomb potential because the half-shell limit of

T, which is implicitly understood in Eq. (127) is not
defined. In fact, we claim that the 7'_given by Eq. (127)
is nof the conventional T defined by the (off-shell~) Eq.
(10),

G (E) = Go(E) + G4(E) T (E)Go(E).
To summarize one has:
(i) Exact analytic formulas without application of

screening, but in such a situation no satisfactory physi-
cal interpretation is known.

(i1) A rather satisfactory interpretation when screen-
ing is applied, but in general no analytic formulas are
known then. There might be problems also in this case
because the range is (very) large though not infinite.

This whole problem can be attacked in a rigorous
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manner to obtain a correct physical interpretation
without the application of screening, All formulations
then have to be set in an appropriate distribution-
theoretic framework. Our approach is in a certain
sense akin to the work of Herbst,* Taylor,* and Prugo-
vécki and Zorbas.?® We shall discuss this problem in
a subsequent paper.?® In this connection we note that
Sec. 4 of the present paper solves only the formal dif -
ficulties as we found them in the literature. This is
just a first step in the process to obtain the complete
solution.

With the approach just mentioned we can in principle
derive the desired physical quantities from the T matrix
formulas obtained in the present paper, for example,
amplitudes and effective range parameters. In advance
we report here already that we found a means of obtain -
ing the scaftering length ¢ _  and the effective range Y
in closed form for gll our potentials. For the simplest
one of our potentials, namely, Coulomb plus Yamaguchi,
these two parameters have been obtained (i) by Harring-
ton' infirst order perturbation, (ii) by Ali and Rahman
and Husain® purely numerically. It appears that the
first order approximation of our result agrees exactly
with the formulas derived by Harrington, The numerical
results of Ref. 51 also agree with our closed formulas.
More details about this subject will be reported.?
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Is something missing in the Boltzmann entropy?*
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A representation theorem for entropy functionals on the set of probability densities on the space R, is proved.
The important feature of the theorem is that the representation contains, in addition to the Boltzmann term,
the continuous analog of the Hartley entropy as well as a term that, in statistical mechanics, corresponds to
the chemical potential and is usually introduced ad hoc into the expression for entropy.

1. INTRODUCTION

The purpose of this paper is to prove a representation
theorem for entropy functionals in statistical mechanics.
This theorem relies heavily on the main result of Ref. 1.,

There does not exist at present a completely satis-
factory characterization of entropy in the continuous
case. Generally, one of two practices has been fol-
lowed: Either entropy is characterized in the discrete
case and its extension to the continuous case conjec-
tured, or it is characterized in the continuous case but
only after assuming that either the entropy functional
or some related functional has an integral representa-
tion. %3 Also, the functional may depend on the choice
of units, or it may not include terms which are used in
statistical mechanics but introduced ad hoc. In Ref. 4,
where the discrete case was treated, a set of “natural”
conditions were found which characterize the Shannon
and Hartley entropies. A representation for the corre-
sponding functional in the continuous case was found in
Ref. 1. This representation has the advantage that it
contains, in addition to the usual Boltzmann term, a
term that depends on the dimension of the space, which
in statistical mechanics is the same (except for a factor)
as the number of particles in the system, and hence can
be interpreted as the term corresponding to chemical
reactions, However, it does not contain the continuous
analog of the Hartley entropy. We believe this to be un-
fortunate, since it is natural that the expression for en-
tropy be affected by any information about the set over
which the distribution function is positive—or its com-
plement, the set over which the function vanishes, We
overcome this difficulty in the present paper. We do
this by imposing certain intuitively natural conditions
on the unknown entropy functional and by showing that
any functional H, (on the set of probability densities on
R,) which has those properties necessarily has the form

Hy(f)=-a [z flogfdp+bn+clogu(A,) (1)

where f is any probability density s.t. f logf is integra-
ble, and A;:={x € R,! f(x)> 0}; u is the Lebesgue mea-
sure and «, b, ¢ are real numbers, with a=0, c¢= 0,
The last two terms on the rhs of (1) are the ones miss-
ing from the usual Boltzmann entropy.

We shall consider in a later publication the more
realistic problem in which the requirement that the ex-
act number of particles in the system—or equivalently,
the exact dimension of the space—be known is dropped.
In other words, we shall consider the grand canonical
ensemble,
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2. PRELIMINARIES

The notation used here is essentially the same as in
Ref. 1. Let N denote the set of all positive integers and
let B,, n< N, denote the o-algebra of Borel sets in the
Euclidean space R,. Let u be the Lebesgue measure on
R, and V(R,, B,, 1) the set of all probability densities
in L((R,, B,, i) s.t. flogfe L{(R,, B,, u). We shall de-
note the set of all simple probability densities in
V(R,, B ,, u) by V(R,, B,, 1) and the set of all nonnegative
simple functions in L,(R,, B,, 1) by S(R,, B,, ). When-
ever it is necessary to indicate the dependence on the
dimension of the space, we shall do so by attaching a
subscript to the appropriate quantities,

For each fe V, let A, ={(x;,%y,...,%,)
&R, f(x{,%,...,%,)> 0}, Consider the generalized
entropy functional H, on V defined by (1). (The condition
that o> 0 is well known; the condition that ¢ = 0 cannot
be relaxed. See the Appendix for proof.) It has the fol-
lowing properties:

(1) Let f € V. For any positive integer ! <n, let
f', f’ be the marginal densities of f defined by

f,(x19x21 e ’xl)
:fRn_, f<x1’x29 s Xy Xpagy e e rxn) dxl-rl o ndxm
(2)
f"(xbhxlﬂy L 9xn)
=ﬂgl S, Xay oo Xy, Xy e v X)) day dag o0 0 dxy.
Then

H(f)< H,(f"+H,_,(f") (subadditivity).

(2) If, for some &N, ! <n, and for every
x=(x1,x2,.“ ’xn)ERn

SE)=F 1, Xy o ooy ) F Kpag, Xpaay o o o 5 %),
where f’ and f” are defined as in Eq. (2), then
H,(f)=H,(f")+H,,(f") (additivity),

(3) Let T be an invertible, measure-preserving trans-
formation of R, into itself and let Uy be the isometry on
L,(R,, B,, 1) induced by T:

Urflx)=f(Tx) ¥x<R,
Then
H,(f)=H,(Urf).
(4) Let {S;} be a sequence of functions in S(R,, B,, i)
such that s;4 fa.e. If fe V(R,, B,, 1), then
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Hy(sy/\si]|1) = Ha(f) as i—w,
Here, [ ||; denotes the L,-norm.

Proof: Since properties (1)—(4) were proved in Ref. 1
for the functional

- af flogfdu +bn,

it is sufficient to show that the term logu(A4,) has these
properties. Again, since properties {2}, (3), and (4) are
obviously satisfied, we shall check only property (1).

Let I <n, LN, and let f/, f” denote the marginal
densities of f defined by Eq. (2). Let 4y, 4, be the pro-
jections of A, on R, and R,_; respectively. If ECR,,
FCR,_; denote the sets on which f’, f” are positive re-
spectively, it suffices to show that

n(Ap) < 1 (B) oy (F).
Divide A; into disjoint sets: 4; =4, ;U A{ , where
A, =subset of A; on which ' =0,
Aj, ,=subset of A; on which f' > 0.
Clearly
A{ yCECA,
Now either
prAyp)=0 or u (A q)>0.
It py(Ay,0) =0,
polAy) = py(Af ) = u, (E).
If u,(Ay,,) >0, there are two possibilities:
(1) ol (A0 X Ry} 0 Af] =0,
(i1} u'n[(Al,ﬂ XR,;)N A;]> 0.

If (i) holds, then obviously ,(A;) = waf(41,¢XR,;) N AL
Since Af,, CE, this means that except for a set of mea-
sure zero, A, CEXR, ;. Now suppose (ii) holds. Equa-
tion (2) implies that, for eachx< R, s.t. fflx)=0, f=0
a, e. with respect to u,; on {x}XR,_;. This means that
f=0a.e. with respect to u, on Ay, (xR, ;. Thus there
exists a subset of A; of positive measure, namely

(Ay, ;¥ Ry;) N Ay, on which f=0. Contradiction. Hence
(ii) cannot be true,

Thus either
1Ay, 0) =0 or p[(Ay xR, )N Ag]=0.
Similarly, either
Unai(Ag,0) =0 or w,[(R; XAy ) (MAL]=0.
(A,,, is defined the same way as Ay ,.)
Observe that
Ay =0 = u[(Ay X Ry y)  Ag] =05
similarly for the other.

It HI(A1, 3)=0=tay (Az, o) Hz(Ai) = #z(E), and i, ,(4,)
=, (F), and the result follows. If p, ({4, (xR, ;) NA]
=0 =p,[ (R, XAy, ) N Af], then, except for sets of mea-
sure zero,

A; TEXR,.,; and A;CR;XF,
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i.e., except for a set of measure zero,
A; CEXF,

Hence the result,

3. REPRESENTATION THEOREM

We are now ready to state and prove the main result
of this paper.

Theorem: If @, is a funetional on V(R,, B,, i) which
has properties (1)—(4), it has the representation (1);
in other words,

@, (f)=H,(f) ¥feV.

In order to prove this theorem, we shall need the fol-
lowing two lemmas, for the proof of which we refer the
reader to Ref, 1,

Lemma 1: Property (3) implies that there exist
functions

g T XR, = R;,m,ne N,
m
Fm:{(plyp23-~- ,pm)a pi\’o for 1=<i< n, 21 pizl}y
i=

such that for every

SN2
$p= 24 3
H oy L, @
in V(R,, B,, 1), with A;NA;=¢ for i#j, i,7=1,2,...,m,

p:>0, and with | ,; denoting the characteristic function
of 4;,

2,(5,) =8 (D1, Py« o vy Py (AL, Ay, ..., 1(4,)).

Lemma 2: Properties (1)—(4) imply that if s;=1,/
w4y, Ae B, then

&,(sy)=alogp(A)+bn, nc N, a=0, and beR,.

Remark: In Ref. 1, Lemma 2 is proved for a func-
tional having properties (1)—(3) plus a property slightly
more restrictive than (4). The result is true, however,
even if the last property is replaced by property (4).

It can be shown! that if m is any positive number and

pyq”‘E[O?l]’ (p3’P4a---spm)EFm-2’
23(q, 1~ q,m,m)
g (pr+(1-p)g,pL =)+ (1 =p)A~q), 1, m)

1 times

A/\_A

. <1 _p)/)m’ )—)7) )7;7 a })7;)
m times

e
AL =Py Py T 1T, oo, )

ggr(;m)(pr,f)(l _[I)y (1 —p)p:}, .

-g’ﬁm)(P”l’,p(l —7')’ (1 _p)pa, ..

<@ (A= p)r+pg, (1= pYL=7)+p(L=q), i1, i)

2)
—&n

These inequalities and the symmetry of

g (py, bayen. b, M, M, . .., m)—guaranteed by prop-
erty (3)—can be used to apply Lemma 5 of Ref. 4 to
g and obtain (for m > 2)

gr(x,n)(pivpib .

0,1 —r,m,m).

s Doy 1y 9, o ooy 1)

= - o, (m,m) Z; pilogh; + B, 0m, ),
i=
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where a,(n,m)> 0 and B,(m,m) is a real number. Now
if v, s,u,ve N, m,m>0, and if (py,ps,...,P) €y,

(91, a2 - - - »q,) € T, the additivity of &, gives
g::‘:)(piq 1,[71(1 2y 0 7p1qv5p2q j EL 7p2qv’ ceey puqu:
® v times
e, M, . . . , )
u times
e« —
:gi")(,bi,pz, ey bpmym, L, Wl)
v times
A et
+g§v)(q1, G2y e 39 }’Tl, Wl! ey m)‘
Since this is true for every (py,0s,...,P)<c ', and

every (g,9s,...,9,) € I',, it implies that
@, (v, mm) = a,(u, m) = a (v, m),

i.e., that o, {z, m)= o, a constant, for every =1,
u= 2. Moreover,

Byas(ttv, mimt) = B, (u, ) + By(v, M),

Now if A=U7  A;, where the A are mutually disjoint
sets in R,, and if u(4;) =, p;=1/m for each i,
» b s
=1 p(a) lAi T omm
Hence Lemmas, 1,2 and Eq. (4) give
— alog(1/m) + B,(m, m) =alog(mim) + bn
or

B,(m, m)=alogm + (a — a) logm + bn.

Hence
m times
s ettt —
(m) y ey 77
8n (P1,P2, e ypmy m,m, ..., W’L)

=-0 21 pylogp; +alogm + (a— ) logm + bn

= Z; pilog(p,/m) +bn +clog(mm),

where c =a—- a, As yet there are no restrictions on ¢
but, as we shall show in the Appendix, subadditivity
[property (1)} requires that ¢ = 0.

Now consider g,(,’")(p“ pZ; L ’pmf hlﬁ’ h27-ﬁ7 e ’hm7%)7
h; €N, 1<i<m. By partitioning for each ¢ the set of
measure 7;m into k; mutually disjoint sets each of which
is of measure i, it is easy to see that

gr(rM)(pls p?: LR yprm hl’—ﬁ’ R ] hm';g)

— ;) p;log(p;/hym)

+clog[(hy +hy+° o0+ h,) ml+bn.

Lets, e ?(RH,B", u) be defined as in (3), Then there
exists a sequence of m-vectors
iy My By My o Ry it,), ¥=1,2, 00+
with 2, ¥ 0 and &;, € N for all ¢ and » such that

Rypmet u(A;) as v— o,
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Also, for each 7, there exists a set 4;,CA; such that
(3 (Air) =hip ™,

The sequence of simple functions

_ YZ‘/ Pilag,

s - ’
m iz H (Ai)

is bounded above by s, and converges to it monotonical-
ly. Hence, by property (4),

én(smr/“ Smr ” 1) - (}"(sm)‘

However, if we set

() / & ).

r=1,2,..

A4

QirE
then
Smr - & QiriAir
USmurlls 351 Ry,
so that
S m, q;
& mr =—a irlog [ —HI—
"<||s,,,,||1> 4 g(h,.,m,)

+clog[(hy,+hop+ oo+ Ry m, ]+ bn,

As ¥, g;,—~p; and ;. m,t u{4;). Hence

m

d),,(sm):—aé Pi10g< Di )+clog (E u(Ai)> +bn,

L4;) i=1
Finally, let fe V(R,, B,, i).

For each x let

F) = {&'—1)/2’ if (-1)/27< flx)<i/2" (=1,2,...,27
r if flx)=r.

Then f, t f everywhere, and since f is integrable, each
f, is integrable,

It
A ={xeR,|G-1)/2"< flx) <i/2"}
and

B,={xcR,|flx)= 7},

2Ty G-1)
f,:§ o [Air'H’IBr for each 7.

The integrability of f, implies that all the sets B, and
A;, except Ay, are of finite measure and that u(4,,)

=w, Further, the function £,/|| f,!l; can be put in the
form (3) with

P =[G -1/27|f 1 uAs) G=2,...,2)
b=/ 7, llp) (B,
so that

2Ty
2 bi+b,=1.

i=Z

Hence )
S\ S G-1)p4;,) i=1
¢>n(||f,n1>‘ o 2 S log (Z'Hf,iI)

: v v
BT ““B'“"g(nf,nl)
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1) 1,1)

[

a;

FIG. 1

N

I
[~

£
+clog ;
(H]J::Ih)

But we have already proved that H,(f,/l £, |l}) = Ha(f).

wiA;,)+ p.(B,.)) +bn

By property (4),

&, (f/ I fr111)

Hence

@,(f) = Ha(f),

and the theorem is proved.

= @,(f).

APPENDIX

We shall now show, by constructing an example, that
subadditivity requires that ¢> 0, given that a= 0, Let
n=2. ¢yjic N, let f; be defined as shown in Fig. 1
with a;, 5;> 0.

Then p(A; )=1 and Ay; =A,;=[0,1]. Normalization of
f; gives 2a;+b;=4. The marginal densities f3, f; of f;
and hence the functionals Hy(f;), Hy(f}), H{(f]) can
easily be evaluated. Some computation shows that in
order for subadditivity to hold, we must have

a [—i log (a,) + (a;+b;) log (a%@ - —bj 10g2:|

4 2 4
+clogi <0. (5)
For each j, let
a;=(2'-1)/2", b;=1/27",
Then after a small computation (5) reduces to

1 22-1 1 27 +1
a (5 log =577~ + 51 108 m) +clogs <0,
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a 3 1 2% -
(c + W) log71 [2 log —zf—

1 2941 ot
*Ef“mg(z«’ 17738/

We claim that the quantity in square brackets on the
lhs is nonnegative. Assuming for the moment that it is
true and using the fact that ¢ = 0, we must, in order
for subadditivity to hold, have

c+a/2"%= 0,

Since it would be true for each j, it would imply that
¢= 0. Now it just remains to show that

1 2%_1 1 <2f+1 214) 0.

3108 g +gm log {577 "3
Let
1/29=x. Asjt=, x40,

We have to show that

ol x+1
log(1 —x2)+xlog3—8 +xlog (1 —x) = 0.

The inequality is clearly satisfied when x =0. It suffices
then to show that

ol x+1
2
flx)=1log(1 - x°) +x log 3% +xlog (1 —x)

is an increasing function as x increases from 0. For
this, it is sufficient to show that f'(x)= 0:
a4 x+1 X X
7 P
)= 27+1°g38 +10g<1—x x+1 ' 1-x

914 x+1
:log—3§ +log -4/ °

which is clearly nonnegative.
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Starting from the Poisson summation formula in m dimensions, a class of lattice sums is evaluated analytically.
The resulting formulas are applicable to the electronic-structure studies of crystalline solids, the analysis of
stability of quantized vortex arrays in extreme type-II superconductors and in rotating superfluid helium,

and the investigation of Bose-Einstein condensation in finite systems.

I. INTRODUCTION

Recent work by Glasser!=? and Zucker*5 has revived
interest in the analytic evaluation of m-dimensional
sums

27

u,Z)::—» Fllayloyeeoyl YEE+I2 400 +12)°, (1
where ¥’ excludes the term with /;,=1,=---=0, While
Glasser has concentrated mainly on two-dimensional
sums Zucker has investigated sums in 4, 6, and 8
dimensions as well. However, the nature of their tech-
niques is such that it forestalls any comparable degree
of success with sums in an odd number of dimensions,
including the case m=3.

In our recent work on Bose—Einstein condensation in
finite systems®” we have encountered similar sums,
with

Slislayen. 1lm)
=exp—a@3+1i+-+++12)] @>0). @)

These sums have also appeared previously in the work
of Fetter, Hohenberg, and Pincus?® on the stability of an
array of quantized vortices in type-II superconductors
and in rotating superfluid helium. Furthermore, the
behavior of these sums for small values of a turns out
to be relevant to the work of Harris and Monkhorst® on
Madelung sums appearing in the electronic-structure
studies of crystalline solids. In the two-dimensional
case, in particular, these sums may find direct appli-
cations in the general area of surface science, I,
therefore, appeared of interest to investigate these
sums analytically. The main results of this investigation
are being reported here,

II. EVALUATION OF SUMS

We start with the Poisson summation formula

o 1/2 =
Z eman=(2)" 5 e wir/a), (3)
which holds for all ¢ > 0. The m~dimensional version

of (3) gives

m/2
2'[exp(—aR2) —( 1) ’ exp(— TFZRZ/(I)] =(E)’n/2 -1,
R,, a a

@)
where R?=[} +2++++ 4%, Integrating (4) with respect
to a, we obtain the identity
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] 1 am /2 1°R2
2 [ﬁ exp(=aR?)+ 575 Biamy 12 <7

m

22 ”m/za(z-m)/2+a+cm m=1,3,4)

=<{ m=-
-rlna+a+C, m=2),

(5a)
(5b)

where the exponential integral is given by
En(z)zf t" exp(— zt) dt (n=4;m 20),, (6)
1

For m > 4, the function E,(z) in (5) has to be replaced
by

ozﬂ(z):fa° (" exp(— zt)dt (n=m;4 >0); (M

1

the right-hand side remains the same as in (5a). We
observe that, for all m, the sum in (5) is minimum
when a =7; it follows that

C,>mu/(2-m) (m=+2) (8a)
and

C,>nlnm -, (8b)

For m=4, we obtain the simple result
1 2
?{(EE [exp(-aR?)+ exp(- 7°R%/a)] ): %— +a+C,,

)
which is symmetric with respect to the interchange a
— (*/a). For a=m, it reduces to

1
2’ 75 exp(-mR?)=1+1C,,

% (10)

from which the constant C, can be readily evaluated, We
obtain C,= -5,545178.
We shall now consider more practical cases,

(i) m=2. In this case our identity takes the form

1 2p2
E'[ =z exp(-aR?)+ 1E, <1r R >:| =-rmlna+a+C, (11)
Ry LR a
Noting that
. r 1

szl&l.rg <§2> 7 exp(-—aR"’)—wln(l/a)) , (12)
we obtain, following Glasser’s method,?!
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1y]4
C,=7 (y—ln M ):0.'771605o

47 13)

Using (11) we have been able to simplify considerably
the evaluation of the planar sum 3}’ Ko(u‘/lli-%l;) en-
countered by Fetter et al.,® with the result

E K(uVF—)— 2+ 1n<£>+<y ln[——(d->

Fia=cw®
2 ©
- U@ an G+ )]
=

27 1 (14)

valid for all g > 0. The same sum also showed up in our
recent analysis of Bose—Einstein condensation in a two-
dimensional system of finite size,” The reduction effect-
ed in (14) then enabled us to discuss successfully the
circumstances under which a condensate component
could appear in the system.

For a<w, Eq. (11) gives

E' 2exp -aR?)= -rlna+ C,+a - Ola exp(~ 7%/a)].

(15)
Successive integrations with respect to a now yield
0 1 2
%2/ 77 ©Xp(-aR?)
~4£(2) B2)+ malna - (1+ C,)a — La?, (16)

- 1
él e exp(-—aR?)

~42(3) 8(3) - 4£(2) B(2)a — ga21na+<3; + %>a +ias,

1m
and so on, The constants of integration in these formu-
las were obtained from the following result due to
Hardy!®:
=4£(s) B(s) (s>1),

IZ’ 2+12) (18)

where
tle)=L (+1)°,

EJ

Bls)= 24 (-

121+ 1),

It is important to note that the error term in formulas
(15)—(17) is such that, though valid for small a, they
are useful for sizable values of ¢ as well. For instance,
even for a=1, we obtain an accuracy of about 1 part in
30000 from formula (15), about 1 part in 250000 from
formula (16), and about 1 part in 750 000 from

formula (17),

Combining (15) with the corresponding one-dimen-
sional result,

E' 7 exp(-al?)=C, - 27'/%2a*? +a - O[a®/? exp(~ 7%/a)},
(19)
where
C,=n?/3=23,289 868, (20)
we get
= 1
> ~a(2+13
Z @ Rt
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_ [P 1/2 ,1/2
= 41n+<4—-2>+1r a

-4a ~Olaexp(-7%/a)l. 1)

The last result provides an improvement over the one
reported earlier by Glasser.,!

For a> 7, we obtain from (11), writing (n?/a)=b <7,
LI 2 C2 2
E, (bR )— +1nb +{ =2 —21n7 - Olexp(-72/b)]. (22)

The main term here corresponds to replacing the sum-
mation over R by an integration while the remaining
terms arise from the discreteness of the sum, Again,
the nature of the error term in this formula is such
that it can be useful even when b is not too small.

(i) m =3, In this case we have

1 1 72R? 27372
;2 [I—{E eXp(—aR2)+TI"<2 , ”7>] —Tr17§—+a+c3,
23
clearly, (23)
1 273/2

First of all, we note that by using (23) we can express
the sum

(25)

+ exp[- 2y @} +q5+q3) /7]

S=2 Pl
which appears in the study of Bose—Einstein condensa-
tion in a three-dimensional system of finite size,® in a
form that will allow us to carry out a rigorous discus-
sion of the phenomenon of condensation in terms of a
“collapse of the lattice points of the thermogeometric
space of the given system towards its origin, ” Details
of this work will be reported elsewhere,

For a <7, we obtain from (23)

w2 7 exp(= aRz)_Tz—-FC +a - O[a' /2 exp(~7*/a)].

R3

(26)
Evaluating this sum for a suitable value of @, not nec-
essarily too small, we get

C,=-8.913633, @m

This is in perfect agreement with the value reported
by Harris and Monkhorst® for their constant C which

was defined as
810 f = d3k>

‘11‘12(13 3

28)

C=1im <

where

k=27 ( L L Ls.)
a,’ a,’ a,

and the limit in (28) implies that the included region of
the k-space is extended to infinity. In the work of Harris
and Monkhorst, C is a measure of the electric potential
at a given lattice point when a unit positive charge is
placed at each of the other lattice points while a balanc-
ing negative charge is distributed uniformly throughout
the space. Expressed in units of 2n/a,), C is a function
of the ratios a,/a, and a,/a,. When a,=a,=a,, C is
precisely equal to our C; cf. (24) and (28).
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The foregoing observation suggests that we generalize
our results to the anisotropic case where

= P12 + 22+ v U2 /2, (29)

To do this we simply modify the Poisson summation
formula (3) to

i}_ exp(-aril?)= :—i(a> 'iE exp(— m21%/7r%a)

1= JEP
(=1,2,3), (3’)

with the result

o Ri exp (- aR?)

3

2773/2 C )+ <
(26')

The correspondence between our constant of integration
C, and the lattice-structure constant C of Harris and
Monkhorst now turns out to be

a2 43\ % 2 1. % 30
CHM(“l, a1> as ¢ <a1 aa) (50)
However, the evaluation of C, with the help of formula

(26’) is considerably simpler than the evaluation of C
by the method of Harris and Monkhorst.

In passing we note that, by combining (15), (19), and
(26), we obtain

i BrESD) exp(-a(2+12+12)]

1 73/2 3
=7 L+ g Ina+3(C, - 3C,+3C,) - §rt /% /2

+4a - Ola*/? exp(-7%/a)]. (31)

Moreover, by successive integrations of (26) with re-
spect to a, we can obtain three-dimensional formulae
similar to (16) and (17). The constants of integration

appearing there would involve triple sums such as

27 @RS,

(Ii)
which can be evaluated by using a technique due to
Mackenzie, 12

For a> r, we obtain from (23), writing (72/a)
=h << T,

™2 L Lo opise_ 2
=+ 1/2+2b Olexp (- 7%/b)].
(32)
Again, the main term of this result corresponds to re-
placing the summation over R by an integration while
the remaining terms arise from the discreteness of the
sum. Moreover, this formula is useful even when % is
not too small.,

»rl F(z,sz)_
Ry

ll. SOME FURTHER RESULTS

Multiplying (5) by @™ /2 and integrating with respect
to a, we obtain

-, 1 m ~4 . T\ @2 -4 2R
2 e () -(2) T (25 )
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2nm /2 2 2C D
m=-2)a m=2)a®™72 "~ (m- 4)(1“"""/2 +n
(m#2,4) (332)
—glna—n_cz—lna+D2 m=2) (33b)
7.[2
~ —a-Cylna+D, (m=4), (33c)
a
where

Z(mA)/zE(s-m)/z(z) (m < 6)
-4
F(%—,z): exp(-z) (m==6)
22y o 0(2) (m=8),

For a=r, the left-hand side of (33) vanishes identi-
cally; therefore,

D,=2lnr+1 - (C2/Tr), D,=C,ln7,
and

2C
DM:W (m¢2,4).

We note that, in view of the relationship

T{(-n,2)= 71—1 <e— -T(l-n z)) (n+0), (34)

zn

the identities (33) can be expressed as linear combina-
tions of the identities (5) and the ones obtained from (5)
on replacing @ by 7/a; in fact,

2 <f(5)(a) —f;‘?i.(,f?{m (m+4), (35)

fonl@)= @=m) \a@&m 72

where f ;) and f 5, denote the summands appearing in
Egs. (5) and (33), respectively. Consequently, though
useful in some respects, they do not represent anything
new, except in the case # =4 when we do obtain a new
result, viz.

Z' [E (@R?) - E, (”zfzﬂ =7(Tl—2—a+C41n (g) . (36)

For a <7, it gives

1 oy T T o
%1 I? El((lR ): ;+C4ln<;>—a+0[aexp(—n /(l)],
4

(37)

which is consistent with the fact that, in the limit ¢ —0,

I L

Before concluding we wish to remark that certain
other classes of lattice sums can be similarly evaluated
if, instead of the conventional Poisson summation form-
ulas (3) and (4), one employes

@R2)(272R® dR) = Fa— (38)

o

[N 1/2 %
2 -y exp(—a12>=<j’;) 2 expl- 120+ 57/a]
(39)
and the corresponding m-dimensional version of this
formula, This would lead to Madelung sums for a lattice
in which the charges placed at the various lattice points

alternate in sign. Moreover, depending on the nature of
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the problem at hand, one may as well use a suitable
combination of the formulas (3) and (39). Finally, for
treating lattices with a lower degree of symmetry, one
may start with a more generalized form of the Poisson
summation formula, such as

o

27 exp[-a(@2+1,1,+12)]

i1, 02~

27 o
_(ﬁa>h2 exp[- 4722 +1,1,+12)/3a], (40)
2"
which is appropriate for a triangular lattice. More
generally, one may employ the formula

21 exp [—a "2 r“l,lj]

“i) 0 ial

m/2 ,”2 m _
=<1) 2 exp[— = ‘?‘1 r‘}l‘lj] ,

a {ryg) (41)

where (r;}) is the inverse of the matrix (r,,) and, with-
out loss of generality, the determinant |#,,| has been
taken to be equal to unity. Generalizations resulting
from the use of formulas (39)—(41) will not be pursued
here,
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Separation of variables in the Hamilton-Jacobi,
Schrodinger, and related equations. |. Complete separation*
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It was established by Levi-Civita that in n dimensions there exist n+ 1 types of coordinate systems in which
the Hamilton—Jacobi equation is separable, n of which are in general nonorthogonal; the form of the
separated equations was given by Burgatti and Dall’Acqua. In this paper first the general forms of the n+ 1
types of metric tensors of the corresponding Riemannian spaces V, are determined. Then, sufficient conditions
are given for coordinate systems in which the Schrodinger, Helmholtz, and Laplace equation are separable.

It is shown that there again exist n+ 1 types of such systems, whose metric tensors are of the same form as
those of the Hamilton-Jacobi equation. However, except for the “essentially geodesic case” of Levi-Civita
they are further restricted by a condition on the determinant of the metric; this condition is a generalization
of that found by Robertson for orthogonal systems in the case of the Schrodinger equation.

I. INTRODUCTION

The method of separation of variables is probably the
most common one for attempting to find solutions of
partial differential equations (PDE’s), and is mentioned
at least in passing in every textbook dealing with such
equations. It is therefore rather surprising that the
literature contains very few systematic attempts to
determine the coordinate systems which permit the
solution of a particular PDE by this method.

Almost all equations studied can be associated with a
quadratic form

T(‘Il"' Qs (il“'é")E% le gkl(fh"'qn)‘}kélp

d
= 2l =& (1)

where the g, can be considered as coordinates,  as the
time, and the 3n(n + 1) functions g,, as the metric tensor
of a Riemannian space V. In the following it will be
understood that the range of Latin indices is from 1 to
n, but for our purposes it will be preferable always to
indicate summations explicitly rather than to use a sum-
mation convention; similarly, since in this paper we

are concerned with special coordinate systems rather
than tensorial relations valid in all coordinate systems,
no tensorial properties will be implied by the position
of any index, except for the co- and contravariant
metric tensors g,, and g*.

If we are dealing with a problem of classical mech-
anics, T is interpreted as the kinetic energy and the
metric is positive definite. For a conservative system
we then have a potential energy V, a Lagrangian

Ly 4y 41 @) =T(qy g, @G a) = Vg -+ q,), (2)
and a Hamiltonian

H{qy " qu by P =T(gy @y Dy D)+ Vigy =+ q,),

kol=1

T(q," " qub - P)=% § ghp. by, (3)

n
Z gkmglmzﬁkl’

m=1
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where 8, is the Kronecker delta. We too shall restrict
ourselves to PDE’s which can be associated with (1) and
(3), but without necessarily implying a connection with
mechanics or a positive definite metric. The problem

of separability then reduces to the determination of all
coordinate systems, i.e., of all metric tensors g,,, for
which solutions exist which can be obtained by separating
the PDE associated with (1) into a number of ordinary
differential equations (ODE’s) and of the form of all
potential functions V which allow such a separation.

The most famous PDE associable with (1) is Laplace’s,
which, as is well known, is separable in Euclidean 3-
space E, in 11 orthogonal coordinate systems (the el-
lipsoidal coordinates and their degenerate forms).?
However, from the point of view of separation of
variables it is neither the simplest one nor the one
studied most systematically. Surprisingly, from this
point of view the simplest PDE, and the only one for
which the problem of separation of variables has been
solved completely, is a nonlinear one. The system (3)
can be associated with the Hamilton—Jacobi (H—J)
equation

oS
E +H(q1"'q,,7 pl"'pn):()y
oS

b= —a—q-‘— sy t=1+"n (4)
If we assume

S(t,qy-q)=~Et+W(q,°q,), (5)
where E is a constant, Eq. (4) with (3) reduces to

u oW oW
1 m i 2% LV=E, 6
3 k'Ehl g 39, o4, (6)

which is a nonlinear first order PDE. Following earlier
studies by Liouville and Jacobi, in 1891 Paul Stickel,
investigating the question of finding a complete solution
of this equation of the form

n

W.q,), (7

i=1

Wigy - q,)=

with each W, depending on a single variable only, gave
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a celebrated solution for orthogonal coordinate sys-
tems, ? which is frequently quoted and has found its way
into some textbooks. =% Oddly enough, other work by
Stdckel himself, ® which gave solutions for nonorthogonal
systems in two dimensions, and its further develop-
ments have been completely ignored in the recent litera-
ture, in spite of the existence of a very detailed review
article.” Generalizing Stickel's results, Levi-Civita®
established the necessary and sufficient conditions to be
satisfied by H and the corresponding metric if Eq. (6)
was to be separable, and deduced the existence of n + 1
distinct types of such metrics. Later, Burgatti® gave
forms of the separated ODE’s sufficient to lead to these
n+1 types, and subsequently Dall’ Acqua'® proved that
these forms were also necessary.

Although the general form of the separated equations
has been known for some time, the general form of the
metrics following from these has not been given before.
In Sec. II we shall establish this form, after briefly
summarizing those results of Levi-Civita, Burgatti,
and Dall’ Acqua which are needed for this purpose. In
Sec. III it is shown that the same metrics allow separa-
fion of the Schrddinger, Helmholtz, and Laplace equa-
tion, subject only to a condition on the determinant of
the metric. The results are briefly discussed in Sec.
1v.

Il. THE HAMILTON—-JACOBI| EQUATION

Following Levi-Civita and Dall’ Acqua, we divide the
variables (and their indices) into two groups

(8a)
(8b)

Qo a=1ep,
4y, pP=v+l--n

(defining v =0 if the first group is absent), to be called
variables (and indices) of the first and the second kind,
respectively. The division into these two groups arises
from the role of the variables in the conditions on H
given by Levi-Civita, but there is no need to discuss
this point here.

In the following, letters of the Greek alphabet up to
and including v will be used for indices of the first kind,
and after v for those of the second kind. Latin indices
will be used if the entire range 1.1 is covered. To
simplify the notation, we shall indicate the range of any
summation only by »! for variables of the first kind, by
5! for those of the second kind, and by ¥ for those of
both kinds. We assume n>1, as otherwise the problem
of separation does not exist.

Corresponding to the coordinates of the first and
second kind, respectively, we introduce two sets of
arbitrary continuous functions, each depending on a
single variable only,

(9a)
{(9b)

Posldg)y @, B=1-v,

gﬂpo((]p)’ [)50:1)+1“.n‘s
with nonvanishing determinants ¢; and ¢, respectively.
The cofactors of ¢ g and ¢,, in their respective deter-
minants are denoted by ¢, and ¢,,, respectively; note
that they do no! depend on g, and ¢g,, respectively. If
one or both of the determinants contain only a single
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element ¢, we will define ¢,; =1. We will frequently
use the well-known relations

1 1

% ¢QB¢QK = z (PB a(\bxa: d)l éeks (10&)
I I

; (pnu¢ﬂ-r = ; ('000 d)-ra = (;blI 60‘{? (IOb)

without explicitly referring to them.
We also introduce three sets of arbitrary functions

FXa), Fa)=F,  ulq,)

K,A=12v, p=p+1--n, (11)

each depending on a single variable only and where the
f’s and F¥¥s must be continuous, and two sets of
arbitrary constants (“separation constants”)

C o a=1eey, (12a)
C,, p=vt+le-n, (12b)
The separated ODE’s then are
aw 1
dg, ? Caslda) € a=1--v, (13a)
AW, 1.,
dqp _%: fp (qp)cg
I
t(‘? F‘p“((jp) C.Cy

/2
+Zu)n:ppo(qp)co—2up(qo)> , p=v+1-en,  (13b)

Corresponding to the n + 1 possible values of v, there
are thus 2 + 1 different types of equations T,. These
equations were first obtained by Burgatti, ® who showed
that they are sufficient to allow solutions of the form
(7); the proof that they are also necessary was given by
Dall’ Acqua. ! The type T is that discovered by Stickel®
and T, is that found (though not solved) by Levi-Civita. ®
In the latter case, V=0 {apart from a trivial additive
constant which here and in the other cases is assumed to
be absorbed in E); the mechanical problem is that of
free particles, and the trajectories following from (1)
can be considered as a geodesic in V. This type was
called “essentially geodesic” by Levi-Civita to dis-
tinguish it from the other types which are separable
even in the presence of potentials of the form (3); as
shown by Dall’Acqua, there are no cases in which the
presence of a potential is necessary to achieve
separation.

We shall now derive the forms of g’ and V following
from (13) by eliminating the separation constants from
Egs. (13) and comparing the resulting equation with
Eq. (6).

Multiplying the set (13a) by ¢_,/¢, and summing over
«, we obtain
g AWy e
_cf d)[ d(]a o
Substituting this into (13b), rearranging terms, and
squaring, we get

(14a)
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(de _ ZI foB(baB dWa>2
dq, a8 O dq,

I FDKA (boue ¢'B)\ dWa dWB
o8k @2 dq, dq,

+ 270,00, - 2u,(4,)- (14b)

Squaring (14a) and changing dummy indices, we obtain

1 ¢m1¢67 dWa dWB 2
— = —— =C.. 15a)
L& dq, da ‘
Multiplying (14b) by ¢,,/¢y, summing over p, and
rearranging, we get

ﬂr_ <dWD _ I fDB(;me dWot>2
e on dq, an O dqq
) § 1 FQKA (pan (bBA d)p‘r de dWs
? a.BZ,':c,l ¢12¢n dqa dqs
43 2oor =c,. (15b)
) ol
We now sum Eqgs. (15a) and (15b) over y and T,
respectively, add the resulting equations, and put
e+ %, =2E. (16)
Y T
Then we have
ZI (pon‘r}oﬂr dWa dWB
o,8,¥ ¢? dg, dq,
+ anpi (dW" - an ¢a8 dWa>2
0,7 ¢n dqp o8 ¢’1 dqa
e F ¢, Oator AW, dW
- SMI 2 kB T a 8
i§ a.ﬁi.k d)xzd)n dqa dqe
w0 Bl g, (17)

oyT big

We first consider the case v=n, i.e., the type T,. Then
Eqgs. (16) and (17) reduce to

2.¢2=2E (18)

and

E d)ard)Br dWa %

=2E,
a8,y ¢12 dqa qu

(19)

Comparison with (3) shows that we must have V=0 and

g"‘ﬁ: E ¢ar¢ﬂr .

20
PR 20)
This is equivalent to

ag™ 72 <ﬂay(flu) (Pay(qB) (21)

[as can be readily verified from Eqs. (10a) and the
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definition of g** given in Eq. (3)}, a result found ex-
plicitly for n=3 by a different method by Dall’Acqua. "
Furthermore, it was shown earlier by Levi-Civita® that
for any solution of the essentially geodesic case the
Riemann—Christoffel curvature tensor vanishes. There-
fore, all metrics (21) are those of flat (Euclidean or
pseudo-Euclidean) space S,. As also shown by Levi-
Civita, in the Euclidean case the metrics are all related
to their Cartesian form (with Cartesian coordinates y,)
by transformations of the form

Vo= ; Qsalds); Qo= f Ve dgs.

The extension of his argument to the pseudo-Euclidean
case is immediate.

(22)

The form of W follows from integration of Eq. (13a);
because of Eq. (6), constants of integration can be
omitted.

Summarizing our results we thus have

Theorem 1: The Hamilton—Jacobi equation (6) (with
V =0) can be solved by the method of separation of
variables in any S, (2> 1) which has a metric of the form

Ep1 ™ J—Zl; ‘ij(qk) (plj(ql))

where the ¢, j(q'.) are #® arbitrary continuous real func-
tions, of a single variable each, with nonvanishing
determinant. The solution is given by

n
W= .El C.if(pij(qi)dqi’
t.7=

where the c; are arbitrary real constants, subject only
to the condition
n
E C? =2E.
=

Now we consider the general case. The form of g*
follows immediately from a comparison of Eqs. (17)
and (6), and that of W from integration of Eqs. (13); in-
tegration constants can again be omitted. Furthermore,
since the metric tensor must be continuous, all ar-
bitrary functions entering it must be required to be
continuous. Thus we have

Theorem T: The Hamilton—Jacobi equation (6) can be
solved by the method of separation of variables in any
V, (n>1) whose contravariant metric tensor is of the
form

Y"\ ('Fo‘oL _fo Kfox) (bakd)BA (bm ,

ol N barbey 2
= 2 e

¥=1 ¢?

ot
KeA=l  O,T=p+l

v Y
om:_zsﬂfa ¢0¢1
£ =1 1 Po
1 n
gpp___ Z: ¢p—r’

- (bﬁ T=p+1

a,B=1--v, 0sv<n,

p,0=v+1--n,

where F *(¢q,)=F_ * and f(q,) are arbitrary continuous
real functions of a single variable each, ¢ and ¢ are
the determinants (#0) of two sets of arbitrary continuous
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real functions ¢ ,{q,) {¢,8=1---v) and

9,q,) (p, 0=v+1---n) respectively, and ¢, and ¢,,
are the cofactors of ¢, and ¢,  in these determinants
(with ¢,,=1 if one or both determinants consist of a
single element ¢, only); the potential energy V must be
of the form

P,T=b+1 ¢)n

V(qv+1 oo q") = Z": “o(%)d)m

where the u,(g,) are arbitrary real functions of a single
variable each. The solution is given by

W= Z[;:l CSI @aﬁ(qa)dqu

+ 3

P2yl |

{i A UALA

B=1

+ ( i F,*q,) c.c,
KypA=1

n 1/2
- El <poa(qo)ca—2up(Qp)) ] dqo,

where the ¢, (i=1--- n) are arbitrary real constants,
subject to the condition

I1l. THE SCHRODINGER AND RELATED
EQUATIONS

In addition to the H—J equations (4), there exists
another way to associate a PDE with the Hamiltonian (3),
the Schrédinger equation

L
e +H(gy *q, Py D)¥=0,

K

b=y 37, (23)

where % is Planck’s constant divided by 2n. In the fol-
lowing we shall use units such that z7=1. As is well
known from the consideration of the Laplacian, the
part of H¥ involving the p.’s must be taken as

19 ([ uﬂ)
g.l72 aqk <g1 & aqx ’

1

n
T(ql G DLt p,,)‘I/:"% k?

g=|detg,], (24)
(using Beltrami’s second differentiat parameter, where-
as the H—J equation involves the first one). If we
assume

W(t, gy g,)=expliEl) d(q,* q,) (25)
where E is a constant, Eq. (23) reduces to

H(Ql'”qn’ pl"o P,,)ZI):E’J), (26)
or explicitly, using (3) and (24),

n 1 d ap
i 7 = 12 o1 YV
Zk'_’;lglz dq, (g‘l o Bq,)
+ Vg, q )9 =Ey. (27
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Obviously the Helmholtz and Laplace equations are
special cases of this PDE, the time-independent
Schrodinger equation, although they are not associated
with mechanical systems described by Hamiltonian fune-
tions. Furthermore, regardless of the physical origin
of Eq. (27), we shall in the following no!¢ restrict our-
selves to spaces with a positive definite metric. Thus,
e.g., Eq. (27), with V=FE =0, and an n-dimensional
metric tensor of signature n— 2, includes the “(n ~1)-
dimensional” wave equation, i.e., the wave equation
for n — 1 spatial dimensions. Another way of including
this equation is by the usual procedure of separating off
a time-dependent factor; then we obtain the Helmholtz
equation, i.e., Eq. (27) with V=0 and a positive de-
finite metric. Similarly, the Helmholtz equation results
from separating off a time-dependent factor in the dif-
fusion or heta conduction equation, or in the damped
wave equation.

We shall be concerned with the problem of finding co-
ordinate systems and potentials which allow solutions
of Eq. (27) of the form

71)(‘7: Tre (1,,) = .'rl ll),-(qi)

of products of functions #; of a single variable, which
can be found by solving an CDE. In general, the co-
ordinate systems for which such a separation is pos-
sible will allow also a corresponding separation for the
other PDE’s mentioned; exception will be noted later.

(28)

Equation (6) was of first order and nonlinear, whereas
Eq. (29) is linear, but of second order. In spite of this
difference, Eq. (27) can be separated for spaces with
metrics of the same form as those found for Eq. (6),
with only one additional condition. Separation may well
be possible for other forms of the metrics, but cannot
be obtained by the method used here, which is patterned
after that used for Eq. (6). It should also be noted that
because of the linearity of Eq. (27), solutions obtained
by separation of variables can be superimposed linearly,
in contrast to the corresponding solutions of the non-
linear Eq. (6).

We divide the indices into two groups as before. In-
stead of Eqs. (13) we consider

L dy,

29
i dq, (292)

= 2 0ula)sbas
1 d;
Op(z )[d)a] = Zl—' (O"u)lfpa(qa)cﬂd)p} + fPB Ce dj/p >
s 1 4,

1 I
+<Z F™g,)c 00+ 20 PoclGo)Co— 21!0((19)) o
Ker c

(29Db)
where ¢, F p’s, u,, and c, have the same signifi-
cance as before, and 0,"’and 0,'*’ are operators in-
volving functions of ¢, and derivatives with respect to ¢,
only (of first and second order, respectively), whose
form will be determined later. Because of the way they
enter the ODE (29a), the ¢;’s and f,*’s now must be
required to be of class C*.

We shall now determine the conditions under which
the system of ODE’s (29) is equivalent to the PDE (27).
In analogy with the procedure used for the H—J equation,
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this is achieved by eliminating the separation constants
from Eqgs. (29) and comparing the resultant equation
with Eq. (27).

Multiplication of the set (29a) by /4y, yields
aqa

Multiplying this by ¢,,/¢; and summing over a, we
obtain

:i?lq)as(qa)cﬂzb. (30)

1 ¢ax ad) .
Tax Y e, (31)
% o1 9q, 3
Differentiating this with respect to g, gives
1o, 0% . 8y
Lok =ic, — * (32)
; ¢I aqaaqp x aqp

Differentiating Eq. (31) with respect to ¢, instead, and
using Eq. (30) in the resulting expression, we get

7 (e ) __ s |
Za;l aCI, <¢I aqa)_ Ck; wrﬁ(qy)cs,b. (33)

Multiplying this by - ¢,,/¢, and summing over y, we
obtain

Gy O (d’dk 37})‘)
- LB —= ) =c.,). 34)
Z o5 (6 34, ) =0 (
Putting k=2 in (34), we get, changing dummy indices,
1 1 9 (¢ar¢ﬂv ad)) 2
- - — (= Y =c 2. (35)
aE.a ¢y 94, $; 04, A

We now multiply the set (29b) by /4, and eliminate
the c,’s everywhere except the last sum in the resulting
expression by means of Egs. (31)—(34). Changing
dummy indices, we get

fo ‘pyﬁ ad)

0 (2)[¢ = (O (l){ aqr]
g O O )
G ¢: 94,34,

Fex X - VB ¥
ﬂ"’z';")' ° ¢'I aqy (pl an
+ Zn(/’nocuw— 214,7,[). (36)

Multiplying this by ¢,./¢y, summing over p, and re-
arranging, we obtain

Tl ooyl T g B
By ¢H

fv 3 _1,0_] 8 ¢ 82 )
O 13 X8 _._L
( [ ¢ 9q, e $  9q,9q,

D Zt L B0 D (0w 0 )

8,7k P o ¢, 9q,
I
T ) uk LA (37
2 bk
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We now add Eqs. (35) and (37), summing over ¥ and
T, respectively, change dummy indices, and use the de-
finition (16) to obtain

L L2 (Gt 20
a,B,7 ¢I 3qu d);[ an
oyl ZF e
O ay fD ¢Ba 31[) ] + fpa ¢Ba azd)
LN 34, &y athaqp

FDM ¢a).¢wr _a_ <¢Bx 9y )
¢ by 0 ¢ 944

+E >

04T 0 gBykad

12 28y y—2Ey. (38)
pr Pp

We again first consider the case T,. Then Eqs. (16)
and (38) reduce to (18) and

v 1 9 fo..0 aw)
- — o— (Tertfr ) —2Fy. 9
dé:.)‘ ol aqa ( % an v (39)

Comparison with Eq. (27) shows that we again have the
form (20) for g*# and thus of (21) for g,,, but that the
additional condition

g7=K¢, (40)

must hold, where K is a constant. Taking determinants
on both sides of (21), we get g= ¢,%>. Thus Eq. (40) is
automatically satisfied (with K =1), and no additional
restriction is imposed compared to the Hamilton—
Jacobi case.

We note that Eq. (39) does not contain a term cor-
responding to V (and thus for positive E is just the
Helmholtz equation). It can easily be seen that we can-
not obtain such a term by inclusion of additional func-
tions on the rhs of Eqs. (29a), as these would lead to
terms in Eq. (38) which have no counterpart in {27).

Equations (29a) can be readily integrated. It remains
to study the reality conditions. As in the case of the
H—J equation, for the metric to be real, all ¢,; should
be real. To obtain real solutions for (29a), all constants
¢, must be real; but then from (18) E cannot be zero
(except for the trivial case of a constant §). Therefore,
our method does not provide us directly with nontrivial
real solutions of Laplace’s equation. On the other hand,
we can construct real solutions by taking a set of Eqgs.
(29a) with complex separation constants to satisfy Eq.
(18). These will result in ¢'s which are complex; how-
ever, we can also start from the complex conjugate of
our original set (29a) to obtain solutions J* complex
conjugate to the solutions ¥, and because of the linearity
of our equations their sum will then be a real solution
of Eq. (27). Furthermore, in the case of the H—J equa-
tion the separation constants were unrestricted, apart
from Eq. (18); now, however, restrictions may arise
through boundary conditions an .
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Thus we have

Theovem 1I1: The Schridinger equation (with V =0),
the Helmholtz, and the Laplace equation can be solved
by the method of separation of variables in any
S, (n>1) which has a metric of the form given in Theo-
rem 1. The particular solutions obtained by this method
are of the form

n N
iﬁ':AeXpi E C; / ()aij(qi)d(]i

i,j=1
(+c.ec. if a real solution is desired),

where the ¢,; are arbitrary functions of class C! and
A and the ¢; are arbitrary complex constants, subject
only to the condition

2E (Schrodinger or Helmholtz equation)

1=
Qm
I

’ 0 (Laplace’s equation).

and to restrictions due to boundary conditions on . The
solutions for different values of the ¢ j’s satisfying these
conditions can be linearly superimposed.

Now we consider the general case. To determine the
possible forms of g*!, we first consider the terms in-
volving ¢°°. These are all contained in the first sum of
Eg. {37). By comparison with Eq. (27) we must have

24
0,15, 2 (110 1),

where f,(g,) is a function of class C* to be discussed later
and the sign is chosen for convenience of comparison
with the H—J equation. We also get g°"=0 (p#0) as in
the case of the H—J equation. Furthermore, we must
have

hod
gl/zg"":F((ll"‘ (/u) fp(qp)z ¢p”

g'* =y Flg,**+ q,),

where F cannot depend on any of the variables of the
second kind, since it must be independent of the value
of p, and remains to be further specified.

(41)

(42)

Now we can introduce new sets of functions

g — Poolq0) o :fua(qa)
Y Du(qn) = fp(qp) s [ty ((10) = fp(qp_) y
L3 = Mqﬁl ! = M)_ 43
F, (qo) = fp((],,) U ((19) = fp(q,,) 4 (43)
from which we get
o=l g,
P= {1 fda,). (44)

where ¢, is the cofactor of ¢ ' (which again does not
depend on ¢,) and ¢; is the new determinant of the
@,,'s. Then we get from Eqs. (42) and (44)

g'V:= oL Flg, " q,)P.

We now rewrite Eq. (38), taking into account the de-
pendence of the various ¢>,.j’s on their argument as well
as the equations and definitions (41), (43), and (44).
Since the original functions (9) and (11) were arbitrary,

(45)
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we can use the new quantities (43) and (44) without the
prime without loss of generality; however, this de-
finition must be taken into account in Eq. (29b). Thus,
Eq. {37) becomes

w13 (%% ﬂ)

@, 8,7 (D—Ia(]a Cbn an
_yige 18 < ﬁi)
g; ¢n fo 94, S aq,
1
+ s bor 1
l;._’: O!Z;B (bn P (46)

X(Om[fofp“ﬁbsa _%}L Sofo%Dpa 821!) >
¢ o g, lon 3qg494q,

I <1 Fof0aader 0 (Cba aw)
+ 200 2 A # =
BeT  asBakah ¢1¢n aqa gf)I an

+23" %"—’- u, = 2E3.
p,T o

Comparing the first and third sum with Eq. (27), and
using Eq. (45), we see that F(q, -+ ¢,) must be propor-
tional to ¢,; because of the presence of the factor P the
constant of proportionality can be put equal to one with-
out loss of generality. Therefore, we have the condition
(47)

n
gY%= ¢ oy I JAUSY

O=p+

i.e., only those metrics are allowed for which f's can
be found such that (47) holds.

Comparison of the second sum in Eq. (46) with Eq.
(2'7) shows that it should correspond to
)
9q, /|

1 0 g1 2
Pl e ) e

oq, qs o4,
(48)
This can be achieved by taking
d
0, [, ey, = = (£, e, (49)
dq,

since the factor of 0%}:/3¢,9¢, in that sum is independent
of g;. No further conditions are introduced, and the
various components of the metric can be identified as
being of the form given in Theorem II.

The solutions of Eq. (29) will in general be complex
and remarks similar to those made for Theorem III
apply. Thus we have [taking account of Eq. (47) and of
the effect of redefinitions (43} (with the prime omitted)
on Eq. (29b)]:

Theorem IV: The Schrédinger, Helmholtz, and
Laplace equations can be solved by the method of separa-
tion of variables in any V, (n> 1) whose metric is of the
form given in Theorem II and whose determinant is of
the form

g=0 7 0r® 11 240, (A)

where the f,(g,) are functions of class C' of a single
variable each; for the Schrédinger equation the po-
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tential energy must be of the form given in Theorem II.
The particular solutions obtained by this method are of
the form

B=A exp(i Z_l cs | qoag(qa)dqa> pﬁl v,(q,)

& pb=

(+c.c. if a real solution is desired),

where the i, are solutions of
i )
1¢ (1
i /o

&

;=

3

—< . F%c o, + Z} @0sCo 2u>zj)p,
Kyl o=p+1

where the various functions are defined as in Theorem

I except that the ¢;,’s and 7,*’s must now be of class

C!, and A and the ¢ ;8 are arbitrary complex constants,

subject to the condition

dqo

B 9
da U T2 ) +foes 30 )

(B)

1
%

v n

> 2+ 27 ¢, =
=l Teved 0 (Laplace’s equation)

and to restrictions due to boundary conditions on .
The solutions for different values of the ¢,’s satisfying

these conditions can be linearly superposed.

IV. DISCUSSION

Theorems I and II contain explicitiy the general form
of the metric tensor for all n + 1 types for which the
Hamilton—Jacobi equation is separable in n-dimensional
space. Theorem III asserts that the Schrddinger,
Helmbholtz, and Laplace equations are separable for the
same form of the metric of type T, as given in Theorem
I, and Theorem IV asserts the same in the general case
for the general form of the metric given in Theorem II,
subject only to the additional condition {A) on the deter-
minant, apart from additional differentiability conditions
on some of the arbitrary functions entering the metric
tensor. Whether the conditions imposed on the metrics
in Theorems III and IV are not only sufficient, but also
necessary, to ensure the possibility of separability for
the Schriédinger and related equations, has so far not
been established. The difficulty is due to the fact that
(contrary to what might have been expected from the
familiar elementary examples) separation of variables
in general involves all separation constants in each
separated ODE, some of them bilinearly; it remains to
be shown that Egs. (29) represent indeed the most gen-
eral form of the separated ODE’s, or that still more
complicated forms are possible.

The metrics of type T, all correspond to flat space;
for those of the other types this is not necessarily the
case. For most physical application we do have to im-
pose the requirement of flatness, however, which may
further restrict the allowed forms of the metric. For
ordinary two- and three-dimensional Euclidean space,
these forms will be given elsewhere.'? Rather re-
markably it turns out that the requirement of flatness
implies that condition (A) is satisfied automatically in
all cases, in agreement with the results for the particu-
lar case of orthogonal coordinate systems obtained by
Eisenhart!’; whether this result is true in » dimensions
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is currently under investigation. Since condition (A) was
the only distinction between the forms of the metric for
the H—J and the other equations in Euclidean space, the
forms of the metric which allow separation for the
Schrodinger, Helmholtz, and Laplace equation in two
and three dimensions are identical with those found for
the H—J equation by Weinacht. !4

For any n, the type T, implies orthogonal coordinate
systems; in this case the conditions following from
Theorem IV reduce to those obtained previously by
Robertson'® in the case of the Schrddinger equation on
the assumption of orthogonal systems (apart from a
trivial mistake in his redefinition of u,). All other types
do not require the coordinate systems to be orthogonal,
disproving an assertion frequently made in the literature
that separation is possible only for orthogonal co-
ordinate systems (for a typical statement see Ref. 16).
However, they do contain some subclasses of orthogonal
coordinate systems. In particular, if for type T,
(Theorems I and III) we require

2E (Schrodinger or Helmholtz equation)

Z) kaj(qk)(plj(qt)zoa k#:l; (50)
7
we obtain an orthogonal coordinate system, with
gkk:Z ¢2kj(qk)5<ﬂk2((1k)51/£’kk- (51)
5 ;

But this metric could also be described within type T,
(satisfying the Robertson conditions and Theorem IV) by
defining ¢,, as the same function of ¢, as ¢,?, while all

other ¢,; vanish, i.e.,
Pula) =02, @y=0, k2], (52)
and thus the metric (51) can also be taken as
1
kk: =
€ Ser
g= T Qp=dg=0by2 I1 f2
Bel Rk I I i} ko
szwkk-1/2~ (53)

This shows that the metrics of the n+ 1 types T, are

not mutually exclusive, a fact which has been noted in
the case of the H—J equation for n =3 by Weinacht. **
Furthermore, the choice (52), (53) allows the introduc-
tion of a nontrivial potential, whereas the choice (51)
does not; therefore, the metric described by either ex-
pression is “essentially geodesic” only by the particular
choice (51) of variables of the first kind.

For all types T, (v#n), Eqs. (B) correspond to non-
orthogonal systems, except if the arbitrary functions
satisfy a number of special conditions which follow im-
mediately from Theorem II. On the other hand, these
equations are self-adjoint as they stand even for non-
orthogonal systems, provided that all f,® vanish. If they
do not, the equations can still be made self-adjoint by a
suitable integrating factor.'” Thus in all cases we can
obtain equations of the Sturm—Liouville type for the
variables of the second kind.

In a recent paper, Carter'® has obtained metrics of a
four-dimensional space with signature 2 which satisfy
the Einstein—Maxwell equations, possess a two-param-
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eter Abelian isometry group, and for which the four-di-
mensional H—J and Schridinger equations are separable,
although some of the coordinate systems are nonor-
thogonal. Insofar as they include electromagnetic vector
potentials in addition to the scalar one, the results go
beyond those of this paper; however, the potentials are
introduced differently, so that even in the absence of
vector potentials the equations considered take the form
(6) or (27) only in special cases. Apart from this, they
are special cases of our results, and all metrics ob-
tained are included in those of Theorems I—IV. The re-
sults will be discussed in more detail elsewhere.

Recently, a group theoretical method for the descrip-
tion of separation of variables was introduced by
Winternitz et al.° and applied to various PDE’s by
Miller ef al.?° Their investigations are less general than
those of this paper in restricting themselves to flat
space and to only one or two spatial dimensions, though
including many more detailed studies of particular co-
ordinate systems and the associated solutions. In the
case of the (one- and two-dimensional) Schrddinger
equation (23) they are more general in also considering
separations other than those obtained here by the re-
duction (25) to the time-independent equation (26). The
results will be compared in detail to those obtained for
flat space by the method of this paper (which, as noted
above, are identical to those of Ref. 14) in Ref. 12.

This paper only dealt with those metrics which allow
complete separation of variables. A subsequent paper?!
will treat metrics which allow only partial separation of
variables for the equations considered here. It will also
contain a discussion of the first integrals or constants
of the motion which follow for dynamical systems from
(complete or partial) separability of the H—J or
Schrdédinger equation.
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A method is developed for deriving a third integral of motion, besides the Hamiltonian and the angular
momentum, of a charged particle, in a dipole magnetic field. This method is particularly useful in resonance
cases, where the usual adiabatic invariants are not applicable. First the Hamiltonian is reduced to a

“regular” form, i.e., its lowest order terms are written as H, = ®, + ©,;, where &, = (1/2)(a’+ pl),

®,, = (1/2)(»*b*+ p}). Then the third integral can be constructed step by step as a series; in every resonance
case a different form of the integral is derived. In the nonresonant cases the Hamiltonian is written in a

normal form H = H*(®,, $,), where ®,, ®, are canonical variables introduced by using von Zeipel’s method.
The nonresonant orbits are quasiperiodic with frequencies w, = 0H*/8P, , w, = wIH*/3®, and rotation number
Rot = w,/w,. As an example the location of a particular resonance is found. The comparison with the numerical

integrations is satisfactory.

I. INTRODUCTION

The problem of the motion of charged particles in
the field of a magnetic dipole has attracted much in-
terest, because of its application to the case of the
Earth’s magnetic field. It was studied extensively by
St8rmer!; thus it is known as the “Stérmer Problem. ”
Some fifty years later this problem came again into
focus, after the discovery of the Van Allen belts.

The motion of a charged particle of mass m and
charge ¢ in cylindrical coordinates p, ¢, z can be de-
scribed by the Hamiltonian

1 Pe  qMp\*®
H=o- [P,2,+P3+('p—w ——173£> } M
where p,, p,, P, are the canonical momenta, M is the
magnetic moment of the dipole, and

p=7cosA, z=vsinx, (2)

The motion of the particle is a combination of a rotation
around the “guiding center, ” with the cyclotron
frequency

w,=qB/m, @)
where B is the magnetic field, and a motion of the guid-
ing center along a field line.

The Hamiltonian (1) is time-independent and axisym-
metric. Thus we have two integrals of motion, the
energy

H=3mv?, (4)

where v is the velocity of the particle, and the ¢-com-
ponent of the canonical momentum p,. If we write p,, in
the form

pw :qM/TG: (5)

and use now dimensionless variables p’, ¢’,z’, and a
new time #/, defined by the relations

o' =p/ry @' =9, z'=z/r, =gMt/mr3, (6)

the Hamiltonian (1) becomes
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1/1 ;
H=%(P§+P3)+§(E —fg) , (7
where the primes have been suppressed for notational
convenience,

Thus the Stérmer problem is reduced to a two-dimen-
sional problem with potential

2
V(p,z)=;‘(-ﬁ1; - %) : (8)
From the geometry of the equipotential curves it is
known that a particle can be trapped only if its energy

is less than 1/32. Alfvén’® proved that apart from H and
p,, there is an approximate third integral of motion,
namely the magnetic moment of the particle

U= vi/ch, (9)

where v, is the component of velocity perpendicutar to
the field line. The magnetic moment is an adiabatic
invariant if the variations of the field in time and space
are small, i.e,, if

T 9B a; 9B

53t ™ B, o)

are small, where T and g, are the period and radius of
the cyclotron motion.

A more accurate integral was given by Dragt® by
using a method of canonical perturbations. Dragt in-
troduced new coordinates, a and b, which are connected
with » and X by the relations

a+1=rcos2) (11)
and
b= (sinn)/7%. (12)

(In the present paper we write a + 1 instead of Dragt’s
a, in order to consider ¢ as a small quantity). In terms
of these coordinates the Hamiltonian (7) becomes

o)+ () |+ e
H=-l{&%] +{=* +
2[(ha h, 2(a+ 1)t cossr ? 13)
where
Copyright © 1975 American Institute of Physics 1469
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FIG. 1. Empirical invariant curve near resonance (—) com-

pared with the nonresonant theoretical prediction (-~~-).
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and p,, p, are the components of the momentum along
a and b,

In this coordinate system the rapid oscillations around
the magnetic field lines are described by the quantities
a and p,, and the slow drift of the guiding center on the
magnetic field line by b and p,. Then the new integral is
approximately?®

1 (2
u*: u - E(—:)—— (ﬁ)haay

c

(16)

where R is the radius of curvature of the magnetic lines
and v, is the component of the particle’s velocity paral-
lel to them,

If a mechanical system has two degrees of freedom
and there exist two isolating integrals of motion (in our
case these integrals are H and u*), the orbits in the
four-dimensional phase-space lie on two-dimensional
surfaces, called integral surfaces. These are sections
of the energy supersurfaces by the supersurfaces rep-
resenting the new integral.

An intersection of such a surface by the plane z2=0
(or b=0) is called an “invariant curve,”

The points of intersection of an orbit by the plane
z=0 lie on such an invariant curve. In particular, the
periodic orbits are represented by one or more in-
variant points. Using the integrals (13) and (16), Dragt
determined invariant curves and found that they are
closed curves, like ellipses, around the point (p=1).
Comparing, further, the theoretical invariant curves
with the invariant curves computed empirically, by
numerical integration of orbits, he observed good
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agreement between them in most of the cases,

But in the cases where the initial conditions are near
those of resonant periodic orbits, there is disagree-
ment between theory and the numerical integrations,
Instead of closed curves around the point (p=1) one
finds empirically elongated curves like crescents (Fig.
1). Such invariant curves are called islands,

The existence of islands cannot be explained either
by Alfvén’s theory or by the theory of canonical
perturbations, This disagreement appears because 4
{or p*) is not an adiabatic invariant if there is a reso-
nance or a near resonance between the frequencies of
the cyclotron motion and the motion of the guiding cen-
ter, The breakdown of the usual adiabatic invariants
near resonances was well known to the first authors that
used them,* but only recently has it attracted special
attention, =7

In the present paper we consider resonance phenom-
ena in the dipole field using a perturbation technique
developed in stellar dynamics. ®~!° This method consists
of finding, step by step, a new integral of motion, be-
sides the Hamiltonian, which is called a “third” inte-
gral, In order fo apply this method, we must have the
Hamiltonian as a power series in the variables with
the lowest order terms in the form

szé(w§(12+p§+w§b2+/)§), (17
where the lowest order frequencies, w, and w,, are
different from zero., We call such a form of the Hamil-
tonian “regular,

If w,/w, is sufficiently near a rational number »n/m,
we find resonance phenomena (m islands).

In the case of the dipole field we have a particular dif-
ficulty, because if we expand the Hamiltonian (13) (Sec.
II) its lowest order terms are not of the regular form
(17). Namely the term containing 52 is missing. Thus we
can say that one lowest order frequency is zero, and we
cannot consider any resonances between the two
frequencies.

In order to avoid this difficulty and bring the Hamil-
tonian (13) to a “regular” form, we “construct” in Sec.
II a term {w®»%. This method does not define w uniquely.
The ambiguity is resolved after we reduce the Hamil-
tonian to a normal form in Sec. OI. The normal form of
the Hamiltonian also gives the approximate positions
of the various islands, corresponding to any given reso-
nance. A numerical application in Sec. III gives
satisfactory results.

I{. THE "REGULAR” FORM OF THE HAMILTONIAN

If we consider a, b, p,, p, as small, we can expand
sin®y and cos™ using the relation

(a +1Yp%2=sin®r (1 - sin% )™ (18)
and find

Sin®x = b%+ 4ab® + 6a°h? — 40" + O, (19)

G. Contopoulos and L. Viahos 1470



where O, means terms of kth degree in the variables
a! b’ pu’ pb’ a'nd

cos®y =1+ 3b%+ 12ab® + 184°b% - 6b* + O, (20)
Then we calculate
R =1+ 6b%+ 24ab® + 36a°b* — 9b* + O, 21)
h;?=1 - 6a + 21a® + 9b% — 18ab” — 56a° + 126a* + 27a%b*
+3b2+0,, (22)
and
2V=a® - 4a®+ 10a* + 3a%b? — 202>+ 35a° - 6a%b* + O,.
(23)
The relation (13) then takes the form
H=H,+H,+H,+H,+H,+ O,, (24)
where
Hy=3(a*+p3) + 3p;, (25)
Hy=1(~ 4a° - 6ap?), 26)
H,=3%(10a* + 3a2b* + 21a®p? + 6p2b% + 9%p?2), 27
H, = 3(- 20a° - 56a°p} + 24ap2b? — 18ap2h?), (28)
and
Hy=3(35a° + 126a*p? + 36a%p2b® — 6a*b* + 27Ta*b?p?
- 9pZb*). (29)

We notice that H, does not contain b?. Therefore one
lowest order frequency is zero. In order to bring the
Hamiltonian to a regular form, we must “construct” a

term 3w?h?, This we do as follows. By solving Eq, (24)
for pZ we find
p2=2—a® - pZ—2H,—2H, —++-, (30)

where % is the numerical value of the Hamiltonian (24).
Thus the term 3b%? of H, can be written in the form

3b%p2=c20%(2h —a® - p?~2H, = 2H, — -+ +)

+(1-c)2b%p2, (31)

where ¢ is a constant. Thus, if we set w?=18kc, we
find a term of the form $w?b2, At this point the value of
¢ is unspecified. However, as we will see in Sec, I,
only the choice ¢ =3 gives results that become more
and more accurate by including higher order terms.

If we set ¢ =3, the Hamiltonian takes the form

H=H,+H,+H,+H,+ H,+0,, (32)
where

Hy=%,,+ &,,, (33)
with
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®,,=3@*+p2), &= +pl), (34)
and
2=9n, (35)
while
H, = 4(—4a® - 6ap?), (36)
H,=5(21a%?%+ 10a* + b2 — $b%%+ 2b%?), (37)
H, = 3(24ap?b® - 56a°? - 20a° + 9ab?p? + 182°0%),  (38)
and
Hy = 3(36a2p2b2 + 126a%p? + 35a° — 45a*b? — 36920
_a2b4 - %gazb pb - Eb‘lpb (39)

We know that % < & for trapped orbits; therefore w

<3V2/8.

We prove now that the equations of motion obtained
from the “old” Hamiltonian [Eq. (24)] and from the
“new” Hamiltonian [Eq, (32)] are equivalent.

If the “old” Hamiltonian is written in the form

=4pi+H'(a,p,,b,p,) + S0 p2=h, (40)
then the equations of motion are
Z—?=% ’ %‘pb (’% + 3 bzpa,
dp __OH dpy_ _OH' “n
dt da df ob b
The “new” Hamiltonian is written
=3pi+H + 2b2Q2h - 2H' - 0% =h, 42)

and the corresponding equations of motion are

%=%(1-§b2), %=< \ BBZ +9p2 ,,)(1- 257,
o U (1 g, (43)
%—‘?—~ a~H—(1-— ?)~ 3b(2h - 2H' - 9b%2).

From Eq. (42) we find that
(2h - 2H' - 0321 - 30%)=p3(1 - 2p?), (44)

Therefore, if 1- $52#0, we find again Eq. (40), and
the numerical value of the second member of the last
Eq. (43)is

<a£: + 3bp >(1 - 3b%).

If we define now a new time {’ by the relation

=dt{(1 - $8%), (45)

(assuming 1 - 252> 0), we find the same equations of
motion (41) with ¢ replaced by /. Thus the orbits are the
same, and the only difference is that they are de-
scribed at a different rate.

The restriction 1--b%> 0 means that 1b] < VZ/3. As
Il increases the truncated formulas (19), (20),---
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TABLE 1. The values of sin’A, z, and p for various a and b.

a=0 a=-0,05 a=0,05
b 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
sinfA 00,0096 0.0347 0,0679 0 0.0079 0.0290 0.0578 0 0.0116 0, 0411 0.0788
F4 00,0972 0.1799 0.2429 0 0.0837 0.1570 0,2152 0 0.1118 0.2041 0.2715
p 1 0. 9856 0.9484 0, 8999 0. 95 0.9388 0.9090 0.8689 1.05 1.0318 0.9859 0.9284
sin27t(2 ) 00,0096 0.0336 0.0576 0 0.0078 0.0262 0.0419 0 0.0118 0.0422 0.0770
Eq. 1

deteriorate, As an example we give in Table I the values
of sin®x for various values of @ and 5, and compare
them with the values of the truncated series (19).

We notice that the difference between the accurate
value of sin®\ and that of Eq, (19} is less than 2% for
b=0.1, and less than 10% for b=0, 2, but it reaches
30% in the case b=0.3 (a=-0.5). Therefore, our meth-
od can be applied if |5 remains small; hence |z| is
also small. It does not apply at all for orbits approach-
ing the origin.

Using the “regular” form of the Hamiltonian (32) we
calculate the “third integral” in the form of a series in
the variables, The algebraic form of this integral is
given by a computer program' either far from reso-
nances, or in exact resonances and in near resonance
cases.,

This integral may be used in finding the invariant
curves and in particular the islands corresponding to a
given resonance,® Numerical applications will be given
in a future paper.

11l. REDUCTION OF THE HAMILTONIAN TO A
NORMAL FORM

If we perform the canonical change of variables
(@,0,p,5P5) — (81, 8,y &5, ®5,) through the equations

a=(2®,,)'/?sing,,

b=(28,,)!/%/w]sinwby, p,=(28,,)'/? coswb,,

p,=1(22,)'/? cosby,
(46)

we find the Hamiltonian (32) as a function of 6,,6,,®,,,
®,,. This is a series of trigonometric terms of the
form %2(m6, + nwd,) with coefficients polynomials in
®1/2, In particular H, has the form (33), while
H3,H4,H5,H are easily found from Egs. (36)—(39).

We will try now to perform a canonical change of
variables such that # is brought to a normal form,
i.e., it is expressed as a function of the new moments
$,,%,o0nly:

I-?:H*(‘I)u 4)2). (47)

Then we can write &, = (a’2+p'2) &, = 5(w?b'%+p}?)
and the orbits in the new varlables are qua.mpenodm,
i.e., they are harmonic oscillations along the 2’ and
b’ axes with frequencies

w,=0H*/38,, w,=wdH*/3&,.

The ratio of these two frequencies is called the “rota-
tion number”

(48)

Rot = w,/w,. (49)

This is the double of the rotation number as defined by
Dragt.®
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In Celestial Mechanics the usual procedure to elimi-
nate the trigohometric terms from a Hamiltonian and
bring it to a normal form is von Zeipel’s method, !

We introduce new variables 6;, &, through the
equations

38 98, , 2S
¢*2=ﬁ=¢+aoj+ae‘l+"
(50)
3S 3S; , 3Ss
= =, 2 +-
=335, "5, de,
where
S=0,8,+ 0,8,+ S, +S,+ -+ (51)

is a generating function, and S, is of degree k in &;/%.

I we denote the derivatives at the point (®,,=&,,
6,=9;) by parentheses, we write, in second approxima-
tion in &}/2,

35, a&) 828, @i)
=&, +(=3) 4 (22) -
Bi2= Py <ae,>+(aei 56,26,/ \38,

328, ass)
- (a 6, ae) (acb ’ (52)
o (25 9S,\, (2%8s ) a_sl>
b: =0, (aq>,> (aq> >+ (aé,ae, 7%,
32, \/3S,
- (s5.25)5e) )

and similar expressions in higher approximations. Thus

Ao e (35)+ (0529 +(35)(52)
(TE) - (22 (2)- () as)
-(ERE)-

(7535
()68 - <§§:) (%%i)

Q
DI
©

(D) - e
(54)
where H* is a function of ¢, only, and
Hi=H, 61, ). (55)

If we equate terms of the same order in the variables
®,, we find equations of the form

0 Se Sk . _ .
(5@:) + < Y ) Hf -G, ~Hy,
where G, contains all the terms of the first member of

Eq. (54) of order k in &}/, that depend only in S;, H
withispk -1,

(56)
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The function H} is calculated by setting the mean
value of the right-hand side of Eq. (56) with respect to
the angles equal to zero. Then Eq. (56) is solved easily,
because its right-hand side contains only trigonometric
terms.

After several operations we find
H¥=0,
S,=2(2®,)*/*[(cos8,)/3 - cos0,] - 3(24,)' /2(28,)
x{cos8,+[1/(1 - 4w?)](cosb, cos2wb,

67

+ 2w sind, sin2w8é, )},
Hf=-%82-[12-9/2(1 - 4w?)]®,®,
-22+1/(1 -4w?) - 1/20%]82,

(58)

(59)
and

Se= (2, {- £sin20, + = sind6, - 1; sin66,}

3 2_7+ 9w?
160?16  4(1 -4w?)

4 Sin2wé, <15 9u? ) 3 ( 1 12w2—9)

+ (2‘I>1)(24>2)[sin2 6, <_

16 " 11-409)) T 32

(sin(291+ 2w8,)
1+w

w + ? 1 —4(1)2
+ sin(26, — 2wé,
l-w

3_sin(491+2w92) 3_sin(491—2w62)
16 1+2w) 16 1 -2w)

9w sin(26, +4wb,) 9w sin(262 - 4wb,)
- (1-2w)?
9 9

9w sindwb, 2[4 9 9
"3 (1—4w2)] * (e [szel( 16 32(1—4w2)>
sin2wé, <g 9w? ) 9 sin(26,+2wb,)

w (1+2w)

8 I1-4w?) " 16
9 sin(26,-2w6,) 9 sin(26,+4wb,)
64 (1+20%

16 (1-2w)
9 sin(26, — 4wb,) +951n4w92 (LJ, 1 )]
64w 2w 1-4w?/]°
(60)

)> + 2 sindé,

64 (1-2w)?

Thus we find, in this approximation,
H*=&, +¢,~ L ¢2-[12-9/2(1 - 40?)}®, 5,
- 2[241/(1 - 4w?) - 1/2w%]@2=h, ®1)
and
W, =3H*/3%,=1-15&, —[12 - 9/2(1 - 40?)]®,,
wy/w=20H*/3d,
=1-[12-9/2(1 - 40?)]®, - $[2+1/(1 - 40?)
-1/2w?]®,. (63)

We notice that w,=1+ O(r), because &,+ &,= O(h).
However, if ®,=0(h), the last term of Eq. (63) is of
O(1) because w?=0(k). Therefore, wz/w is not near 1
and Rot = w,/w, is not near 1/w,

(62)

This is a serious disadvantage because we have no
reason to believe that the higher order terms will be
small compared to those included in Egs. (62)—(63),
and, as we will see, they are not.
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However, if we assume &, to be of O(k?) the last term
of Eq, (63) is of O(k) and Rot is near 1/w. Therefore,
the above theory can give approximately the rotation
number if &,= O(k?), which means that p%(z=0) is of
O(k?), or that the maximum b2 is of O(h); therefore the
orbits are near the equator.

At this point we can check that only the choice w?
=9k [Egs. (35)] can ensure that Rot is near 1/w. In
fact, if we replace §b%? by the expression (31), we find
that H* becomes

&, +&, - 2o2-[12-9/2(1 - 4w?) - (9/2w%)(1 - 2¢)]2 &,
- 2[2+1/(1 -40?) - (1 -c)/w?]®}, (64)

and
wy=1-15¢, —[12 - 9/2(1 ~ 4w?) - (9/20?)(1 - 2¢)]&,,
(65)
w,/w=1-[12 -9/2(1 - 4w?) - (9/2w}(1 - 2¢)]®,

- 2[2+1/(1 —4w?) - (1 ~c)/w?]@,. (66)

Now, in order to have both w, and w,/w near 1, we
must have ¢ =3 and &,= O(h?), Otherwise, at least one
of the terms (9/2w?)(1 - 2¢)®,, (9/2w?)(1 -2¢)®, is of
O(1); therefore either w, or w,/w differs appreciably
from 1,

Up to now we have not considered higher order terms
in H*, It is easy to see that Hf contains terms of the
form &%, 2®,/w?, ¢,0%/w?, #3/w?, and &;'6%. If @,
= O(h), we see that these terms give contributions of
O(1) in w, and w,/w. However, if &,= O(h?) the contri-
butions in w, are of O(k?) and only the terms of the form
®2®,/w? and &,9%/w* give contributions of O(k) in w,/w.
These are found after several operations to be

693 (®i®, &,8}
4 ( w? 4w4> ’ €7)
and their contributions in w,/w are
693 /& &,8,
4 <w2 - 2w4> ’ (68)

Those are the only terms of O(k) beyond those of
Eq. (63). In fact the contributions of Hg, etc., are of
O(r?). We notice now that the terms (6'7) are of O(h?).
Therefore, if we omit altogether terms of O(%°) from
Eq. (61), we have

b+, - L O2=p, (69)

From this equation we find &, for every small &,, of
O(#*). Then keeping in w, and w,/w only terms of O(h),
we find

w,=1-15,, (70)
We_y_f19_ 9 9 6_“33(2; ®,9,
o =1 (12 2(1—4w2)> St g et T\ T 20t )
(11)
and
Rot=w,/w,. (72)

One can see that for $,=0 we have w, <1, w,>w, and
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Rot < w™'; as &, increases, w; increases, w, decreases,
and Rot increases considerably,

We find now the intersections of an orbit by the axis
z=0. It can be easily shown® that for z=0, z>0, we
have h=0, a+1=p, p, =p and b= 5h§: 2..‘[)3 > 0. There-
fore, 7,=0. Then from Egs. (50), (58), and (60) we find

2'1)12:[)5: 2@24' (15 - 300591 +oeee. )(1)1(1)2
+(9/4w? + - - )02 - 240%(20,) /%0, sing, + - -
(73)

Thus p2|,_, is constant to the lowest order,?® but it
has variations in the next order. In fact @, and p?!,_,
are of O(h?), while the variations of pZ!,_  are of G(h?).
Of course, in resonant regions the value of pZ is not
even approximately constant.

The first equation (50) gives now
2¢,,=(p-12+42
=28, +4(2%,)*/2sin®0, + &%(— 25c0s26,
+ 13 cos46, — 3cos64,) (14)

up to terms of O(h?), If we solve this equation for &,
and use Eqgs. (46), we find, in this approximation,

20, =(p-12+p2-4(p-1P+ip'- F(p-1)  (15)
+ 2 0% p - 12+ 257 (p= 1P/ 52+ (p-12].

For a fixed value of ¢, this equation represents an in-
variant curve of the regular type. In the lowest order
this is a circle around the point p=1, 5=0,

The points of intersection of the invariant curve by
the axis p are found if we set =0 in Eq, (75), or
6,=n/2,37/2 in Eq. (74) (r/2 for p>1, 37/2 for p<1).
In the same approximation as above we find

(p=12=28,+4102+£4(20 /2 (76)

(+1if p=1, - if p<1), We apply this method to one
particular case studied by Dragt (private communica-
tion) where 2 =0, 002 907; Dragt finds empirically two
periodic orbits with rotation number Rot=6, starting
at p=0,9350 and p=1,0897. Using our formulas (35),
(69), (70), (71), and (72), we find w=0.161"75, &,
=0,00017, &,=0,00780, w,=0,9581, and w,=0.1596.
Then from Eq. (76) we find p=0,935 and p=1, 087,
Thus the agreement with the numerical results is good.

At the boundary ¢,=0 we find ¢,=0.002 97, and Rot
= 5,89, while Dragt finds Rot=6. 18 by using his own
theory., As we move inside the boundary, Rot becomes
larger; therefore Dragt’s theoretical value at the
periodic orbit deviates further from Rot=6,00. Thus
the present theory constitutes an improvement.

However we must notice that in the present case z is
small (z, ~0.1), For larger z,_, alarger number of
terms is needed in order to find satisfactory results,'®

We are presently applying a computer program to

derive such higher order terms for the dipole field.

IV. SUMMARY

In order to construct integrals of motion for the
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dipole field, which are valid near resonances, we must
first bring the Hamiltonian in a “regular” form

H=3(a?+p2+ w?h? + p?) + higher order terms,  (77)
However, the Hamiltonian is given as

H=3(a®+p2+ p?) + higher order terms, (78)

In order to “construct” a term of the form $w?h? we
notice that a higher order term of Eq. (78), namely
%7 can be written in the form c2b%(2h —a® - p2 - -+ +)
+ (1 -c)3b%2, where % is a constant, equal to the
numerical value of the Hamiltonian. Thus we can set
w?=18ch, and we prove that the new Hamiltonian gives
the same orbits as the original one.

In order to make the best choice of the constant ¢, we
bring the Hamiltonian to a normal form up to the terms
of fourth degree in the variables, Then we compute the
frequencies w,,w, along the (new) ¢ and b axes, and we
require that these should be of the form: w, =1+ higher
order terms, w,=w(1l + higher order terms), as one
should expect from the lowest order terms of the
Hamiltonian (77). This requirement is satisfied only if
c¢=13. Thus we take w?=9% and we can now proceed in
constructing two integrals of motion, which can be
applied both for nonresonance and resonance cases.
Such integrals are particularly useful in explaining the
forms of the orbits in near resonance cases, where the
usual adiabatic invariants are not applicable.

It is clear that the above method can be applied to
other Hamiltonians also of the form (78).
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The canonical formalism for nonlinear relativistic classical field theory is presented. It is shown that the
solutions ®(x) of the nonlinear equation ([0 + m?) @ (x) = A®3(x) as well as the asymptotic fields

Dy, (x) und P,y (x) are local relativistic fields with respect to Poisson brackets, with initial data as
canonical variables. A convenient form for the generators of the Poincaré group is derived, and the

properties of the scattering operator are discussed.

1. INTRODUCTION

We shall consider in this series of papers the explicit
construction of interacting quantum scalar fields d(x)
which satisfy the nonlinear relativistic wave equation in
four-dimensional space—time.

In the present work we elaborate the canonical for-
mulation of the classical nonlinear relativistic field
theory. We first show that if the initial Cauchy data for
the classical field &(x) satisfying the equation

@ +mAe(x) =re%(x), 1<0, (1.1)

are properly chosen, then under the Poisson brackets
the interacting field ¢(x) and the asymptotic fields
&, (x) and ¢,,(x) are canonical, i.e.,[I(x)=(3;%)(x)]

{o(t, %), N, P=6%(x-y),
{o(4, %), o, pi=1{11(, %), 0(¢, )} =0,
and

{8 (1), @5, @} =a(x=v:m).
aut out
This implies that the classical evolution operator
U(7, T,) the Mdller scattering operators U(~ =, 7),
U(t, =), and the S operator S=U(- =, ©) are canonical
transformations.

In addition we show that for the considered class of
Cauchy data the generators of the Poincaré group, P,
and M,,, 4, ¥ =0,1,2,3, are equal to those associated

with the free asymptotic fields ¢;, or ®,., i.e.,
P,=Plr=pou, 1.4

The fields &(x), @,,{x) and &, (x) transform covariantly
under the same representation U, ,, of the Poincaré
group. In particular, we have

{e,Pt=2,0, {&,M,,}=(x,3,-x,0,).

M, = M2 = Mout,

(1, 5)

The classical S operator is invariant under the Poincaré
group and differs from the identity.

We see therefore that this classical field theory with
the canonical formulation satisfies most of the condi-
tions which we usually impose in quantum field theory
like, e.g., locality, relativistic covariance, and as-
ymptotic conditions.

The next step is the passage from the canonical for-
mulation of field theory to an operator quantization.
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This consists in the construction of an operator repre-
sentation of the Heisenberg Lie algebra given by Eq.
(1.2). We carry out this program in Paper II. Finally
in paper III we shall consider the quantum S operator
formalism in the present framework.

Our works represent a continuation of Segal’s program
of the construction of an interacting quantum field as
operators acting in the space of solutions of the corre-
sponding classical nonlinear equations1 (see also
Streater?), The construction of an interacting quantum
field is carried out by the quantization of solutions of
Eq. (1.1). The alternative program of a direct quanti-
zation of dynamical equations (1.1) was considered by
Raczka.®

2. CANONICAL FORMALISM

Consider the nonlinear relativistic wave equation

O +m®a(x) =x¢3(x), <0, x=(,x) <R (2.1)
with the initial conditions
(0, x) = @(x), II(0, x)=m(x). (2.2)

It was shown by Morawetz and Strauss® that for every
given Cauchy data (2. 2) defined and sufficiently regular
on R? there exists the unique solution ®{x) of Eq. (2.1)
and the pair &,,(x) and &, (x) of the solutions of the free
Klein—Gordon equation such that

;{2 X) = .o(b(t’ X) t-‘ocbm(t, X), (2.3)
in the energy norm given by the formula
flo(t, I

= [ Px[2, %) +| Vol x) |2+ nPe¥t, %)), {2.4)

It was shown in Ref. 4 that the functions (7, x) and
II{(7,x) on a hyperplane /=7 belong to the Banach space
of initial data and therefore may be used for the con-
struction of a new free field &,(f,x). This field is given
by the formula

& [t, %[0, 7]

= [ dy ap(t -t x—y)%?,@[/', yie, e, t>7,
and we have
@r(t, x)

== [T, [ &y ap(t= 1), X=¥)3,.8 (", )

(2.5)
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=o(t,® =) [“dt’ [ Pysglt-t',x-y)@%¢,y). (2.6)

Replacing in Eq. (2.5) 83 by 44, we obtain the integral
representation for &,(¢, x) field for { <7. We have

@4, 4, x| @, 7]=1im & [t, x|, 7], 2.7

out T-Fo
in the energy norm.* The free solutions &,(f, x) play an
important role in the canonical formalism and in the
scattering theory of classical fields.

The Cauchy data ¢ and 7 may be used as canonical
variables in classical field theory. If F(g, 7) is a smooth
functional in the sense of Gateaux over the Banach space
of Cauchy data then the functional derivative 6F/6¢(x)
is defined by means of the Gateaux derivative by the
formula

(3:sF) (g, ) —limS"[F(<P +sX,7)

< > f’ﬁxw(m

where X(x) € C{(R®), If ¢ and 7 are functions which sat-
isfy the smooth initial conditions of Morawetz and
Strauss, * then the functions

- F(p,m]

(2.8)

g+sX,m or @,nm+sX,
0ss<o, X CO(RY

also represent smooth initial conditions and uniquely de-
fine solutions &[¢, x1¢ +sX, 7] or ®[ixl@, 7 +sX] of Eq.
(2.1) (cf. Appendix A).

In the canonical formalism presented below an impor-
tant role is played by the Gateaux derivatives and re-
lated variational derivatives §&/0@(X) and d¢ /6m(x) of
solutions of Eq. (2.1), We have:

Proposition 1: The solutions &[- 1@, 7] of Eq. (2.1)
have Gateaux derivatives with respect to ¢ and 7 in the
topology defined by the energy norm (2. 4).

Pyoof: Denote by @, and ¢ the solutions of Eq. (2.1)
determined by the initial conditions (¢ +sX, 7) and (¢, 7)
respectively and let 9,=5"(ds— &). The function 9, sat-
isfies the following equation:

O+ m® 9= D%+ & sd + d%) 9,

and the initial conditions 94(0, X) =X(x), (3;94)(0, x) =0.
Because & has finite F-norm given by Eq. (A1) of Ap-
pendix A, the condition (B2) of Appendix B is satisfied.
Hence by virtue of Lemma 1 of Appendix B one obtains

os(t, IE < €2 [ (| 9X(x) |2 +m2X?) &%,
Denote by 9; the solution of the equation
@ +m?) 9, = V9,

with V(f, x) = 3x¢?(¢, x) and initial conditions 9,(0, X)
=X(x) and (2,9,)(0, x) =0. We show that 9,~9, at s =0,

in the energy norm (2.4). For 9.~ 9; we have the follow~
ing equation and initial conditions:

@+ m®(95= 9)
=320%(95 = 9) T 3N(®, +20){(d;— B) I,
('\9; - “90)(01 x) = O) [at(ss -~ 80)](0’ X) =0.

(2.9)

(2.10)
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Hence by virtue of Eq. (B3) of Appendix B we have

1095~ 99)(¢, ig
<o U@+ 20) (e,
<c|x|(sup| @[+ sup|@|)sup|@s— @]
x| [H19y(r, )l dr]

- @), )lldT

(2.11)

<cq|1|it](sup|es|+sup|e|)
X(f[iVX(x) 12+ m2X2(x) | X)sup | &~ @ .

It follows from the continuity of the solution ®[¢, x|, 7]
with respect to the initial conditions that 119, 9,liz =0
for s =0, The function 9, as the solution of a linear ho-
mogeneous equation with sufficiently regular coefficients
depends linearly on X: hence &[- | ¢, 7] is differentiable
in the sense of Gateaux. Similarly one proves the exis-
tence of the Gateaux derivative for functionals

&[* | @, 7] with respect to 7. QED

Remark: One may similarly prove the existence of
arbitrary order Gateaux derivatives of the functional
®[- |, 7] with respect to the variables ¢ and 7.

The Poisson bracket {F, G} of two smooth functionals
of the canonical variables ¢ and 7 is defined by the
formula

{Fy G}:

e (56F 6G  OF 5G> 2.12)

@(x) om(x) ~ on(x) d¢(x)

In particular for & functionals F(¢, 7) = ¢(x) and G(¢, 7)

=7m(x) we obtain from formula (2.12)

{ox), r(n)} = {e@e={rx), 1(y)}=0.
(2.13)

6(3)(x y

The following theorem shows that the evolution operator
U(t,7,) for Eq. (2.1) is a canonical transformation. In
fact we have

Theorem 2: The field &,[t, x| ¢, 7] satisfies the follow-

ing Poisson bracket relations:
{@: (), &2 (M == Alx =y :m). (2.19

Proof: Let a(x) € C7(R® and let a{/, X) be the solution
of the Klein— Gordon equation satisfying at some ¢t ={;
the initial conditions a(f,, ¥) =0 and (3ta){ly, X) = a{x).
We have then

f daxas‘bf[to, X{ @ +sX, ﬂ]a(X)

= [&x{ [ Pyat-t,x-y)
XS—t"as‘P[f/,Y\‘(P +SX, ﬂ]t'z‘r}‘a-t’a(t; x) [t:tu

= [ Pxo0(t, 07, alt, %) |- (2.15)
We now use the fact that the scalar product
(@,8), = [ d*xalt,x)2.8(t, %) (2.16)

is t-independent not only for solutions of the Klein—
Gordon equation but also for the solution of a more gen-
eral equation (2.9). Such an equation for V=3x&? sat-
isfies the function d,®. Take the solution 7, of this equa-
tion satisfying the following initial conditions:

(T, X) = (7, X),
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(31T, %) = (3, ) (7, X). (2.1

We have then

[ %9 @14, x| @ + X, Tla(x)
:(asq)(t’ '), u’r(t) '))t=1'
:(asd’([, '), uT(t, '))t:o

= [ @%(2;,)(0, XX (%). (2.18)

Consequently,

4}
g(p—(;)fdsyéf[to,yl% rla(y) = (3,4,)(0, X). (2.19)
One derives similarly the expression for the functional
derivative 6&/6m(x). Indeed let B(¢, X) be a solution of
the free Klein—Gordon equation satisfying the initial
condition

B(ty, x)=0, (3,8){(f, x)=B(x),
B(x) = C(RY).

Then, utilizing the same considerations as previously,
one obtains

[ @*x0 @,[t,, x| @, T+ sXB(x)

—

= [ @x3.0[t, x| @, 7+ 5X10,8(, %) [r.

Defining now 9, as 2 solution of Eq. (2.9) with V=31
satisfying at /=7 the same initial conditions as 8(t, x),
we obtain

[ d®%d . {t, x| @, 7+ sX]B(x)

=~ [ dx9.(0, X)X (x). (2. 20)
Hence
g;(x—}fdsy &Lty e, I8y =~ 9.(0, x). (2.21)

It follows from Egs. (2,19) and (2.21) that the Poisson
bracket for the functionals

[ @xa.lt, x| @, 1]alx),
[ &y &,[r,y e, 718(y) (2. 22)

is well defined by formula (2.12), i.e., the considered
integral is convergent. We have, moreover

{] @xa,lt,x]0, 7] ax), [ Eye,lr,yle, 118}
= [ @2~ (3,1, (0, 2)9,(0, 2) + %, (0, 2)(3,5,)(0, )]
:(U'r(f'y '), Sr(ti; ‘))t'zon (2.23)

Using now the f-independence of the scalar product for
solutions of Eq. (2.9) and the definition of %, and 3;, one
obtains

(ll‘r(f,, : )y S‘l‘([” ‘ ))t::(): (uf(ti’ ° )y ST(tiy '))t’ﬂ‘
= f Bz alt’, Z)E::B(ti, 2)|tea
:(Q(tr; '), B(f,; : ))t':‘r:(a(tl) ‘), B(t,’ : ))f'=f

= - f(l{'sxa(x)ﬁ(tyx)

= [ @xa( [ &y st - 7, x - y)3,8(r, )

= | @xdy a(@) At~ 7, x~ y)B(Y). (2. 24)
This proves Eq. (2.14). QED
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Covrollary 1: The interacting field ®(¢, X) satisfies the
following egual time commutation relations:

{o(@t, %), D, P=6%(x~y),
{o@t, %), o, y)} ={0(¢, ), 0¢, y)f=0.

Proof: This follows from Eq. (2.14) and the fact that
for t =7 the values of the field &,(7, x) and IL.(T, X) co-
incide with those of ®(7, x) and II(7, X) respectively for
the interacting field. QED

(2. 25)

We now show that the asymptotic classical fields
&;,(x) and &,,(x) are canonical. Indeed we have:

Theovem 3: The fields &,(x) and &, (x) satisfy the
following commutation relations:

{q)in (x): q)111 (V) = - A(X -y CYII).

out out

(2.26)

Proof: We first prove the uniform convergences of
dsbslt, - l@ +sX, 7] for T =~ . By virtue of Eq. (2.8) we
have

35®r, (7, X) = 324, (2, X)
== 3 [T2dt’ [ &y ag(t-t', x=y)0 (', UL, ).
(2.27

Hence

8@y, (2, -) = Bsry(t, )ig
<3| [72atl [ dy oa(t=t', =)

X&', Y130t )iz,
Using the definition of £ norm and the properties of the
A function, for 7, <7, <{ we obtain
L) dyat-t', - y)o(t’, y)o ot vz
=182, - )3 e (t’, )i,
Hence, using Lemma B1 of Appendix B, we obtain

”aséfl([: D) - as‘brz(t, * )”E

(2.28)

<32 szzdz"chz(t’, 3@ (t, ),

A T .
< 311 ! f Zsup @5t/ x)dt’ sup 118,87, - )iz
Tt x

w t'elry 1,1

scﬁf ® sup @%(t*, %) dt"112,(0, -l (2.29)

1

It follows from the convergence of the integral
e sup,@®(t, X) df which is a part of the F norm given by
Eq. (A1) of Appendix A that

”asq’rl (t, ° ) - as(.b-rz(t, M )”E"—"—'O

Ty, Tg~uw
uniformly with respect to s in a bounded interval. Hence

ds@ialt, x| @ +5X, 7] = 1im 3,®,[¢, x| @ +sX, 7), (2. 30)

Teuw

in the energy norm. Using definition (2.5), we obtain
for s=10

5042, X1, 7]
f A T R
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5(1)1-[1’, x| ¥, 77]
e (y)
This expression converges in the enrgy norm: Conse-

quently, it converges also after integration with a
smooth function of variable x.

=lim [dy

T eww

X(y). (2.31)

Similarly one derives the formula
Jas

=lim [d

T w00

6‘bin[t’ XI (p) TT]

e o X

5W(Y) (Y)

(S(I’r[t, x‘ (p; Tf]
o (y)

The above considerations show that we have conver-

gence for

X(y). (2.32)

6 3
) fd x &1, x| @, 1))

% g [t x]
50) fdxcb,n[t,xlso,n]a(x) (2.33)
and
5;%—, f Px D[, % |0, 13(x)
~goy [ Pxeult, 1o, TR, (2.30

a, B € CJ(R% in the sense of distributions from D’(R%).

We shall now analyze these convergences in detail;
consider a point { =%, for which we shall consider the
convergence of (2.33): Denote by «(f,X) and (¢, X) the
solutions of the free Klein—Gordon equation satisfy-
ing the initial conditions a(ty, x) =0, (3,a)(f, x) = a(x),
and analogously for 8(¢, x). The functional derivative
[6/39x)][dy®, X[ty i@, T]aly) satisfies Eq. (2.19). We
now show that the functions u, are convergent for 7 —— =
in the energy norm, uniformly with respect to ¢{. The
limit #_. is then the solution of Eq. (2.9) asymptotically
convergent at f — - = to a(l, x).

By virtue of Lemma Bl of Appendix B we have
||u.,1(/,‘, )= zt,z(l, g
< Cyllatg (Tgy ) =142 (T3, )lg
= Cyllur (Ty, +) = Ty, )lp. (2.35)
If we take the solution a, of the free Klein—Gordon
equation having the same initial conditions at. /=7, as
the function #,;, then
letr (Toy =) = 0Ty, Mg =llap(Ts, +) — Ty, - ) lig
=llayll, ) - alt, lg.
We shall now apply the same arguments as in the proof

of Eq. (2.29). We have for the function a the following
integral representation:

alt, x) =u. (t,%) - 32 jT'l"df’j' d*y
Xp(t= 1", x = y)&*(H, P, (¢, ).

For the function a, we have a similar representation
with 7, instead of Ty in the lower limit of integration.
Hence for Ty, 7, <f we have

ay(t, %) = alt, x) == 3x [ 2 at’ [ dy

(2.36)
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XAl -t x-y)o3(t, y)u,l(t', V). (2.37)

Applying now the same evaluations as in Eq. (2.29), one
obtains

Hay(t, ) = alt, )lg

< Cyl [7% sup @¥(t, %) dt [llur (73, )l (2. 38)

Consequently, from Egs. (2.35), (2.36) and the last in-
equality one obtains
eer (£, +) = 12, (&, i

< Cyllall,| foz sup ®2(7, x) dt |, (2.39)
1 x

from which the required convergence of #, follows.

In particular the derivative (3;u4,)(0, X) is convergent
in L¥(R®) and by virtue of Eqs. (2.19) and (2.33) we have

o]
@ fd3y el ylo, mlaly)

=1im (3,1:)(0, x).

T

(2. 40)

The derivation of the functional derivative with re-
spect to 7 is similar and we point out the main steps
only, We have

[ %20ty x| @, 1+ sX]3(x)

= [ d®x0,0l1, x| +X]3,8(t, %) | . (2. 41)

Defining 9, as above and using Eqs. (2. 34) and (2.21),
one obtains

Tané(x) f &y @,lt, v @, 11B(Y) = - 1im 9,(0, x). (2.42)

Tauw

Here we have convergence in I - Il, norm in L3(R%),

Using the same steps as in the derivation of formula
(2.24), one obtains

{[ @x oy, 4, x| 0, 1]ax),
out

[ @y oy, r,yle, 7B}

out

= f Axd’y a(X)A(F -7, x-¥)B(Y),

which gives the assertion of Theorem 3. QED

3. LOCALITY

It is evident from Eq. (2.26) that the asymptotic
fields @y, and ¢, are local. The free fields &,{(v),
— <7< which are given by Eq. (2.5) are also local,
by virtue of Eq. (2.14). We show now that the inter-
acting field @(x) is also local, In fact we have:

Pyoposition 4: Let f, gc CZ(RY) and let supports of f
and g be spacelike separated. Then

{e(n, e(@)} =0, (3.1
Proof: Because
{o(n, @)}

= drds{f Bx &(r, X)f(7, X), f By (s, y)gls, v, 3.2)
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it is sufficient to show that
{[ @xe(r,x)a), [ dyals, y)By)}
=0, a,Bec Cy(RY,

when for X< suppa, ye supp8, lr—siI<ix-yl.

(3.3)
(3.9

Denoting by %, as in (2.17), a solution of Eq. (2.9)
with initial conditions on ¢ =¥ equal to (0, a(x)) and by
9, a solution of (2. 9) with initial conditions on # =s equal
to (0, 3(y)), one obtains by virtue of Eq. (2.23)

{[ @xa(r,v)a), [ dyos, y)By)}
= (lt,.(t, * )9 Ss(ty * ))t=0: (M,(t, ° ); ’ss(t’ * ))t='r
= f dx a(x)3,95(7, X).

Since 9, satisfies hyperbolic equation of motion (2. 9),
the initial conditions for 9, and the condition (3. 4) im-
ply that supp 3,94(7, -) N supp @(-)=0. This by (3.5) im-
plies that (3. 3) and consequently (3. 1) is satisfied.

(3.5)

QED

Thus the classical nonlinear field theory equipped with
the Lie algebra structure provided by Poisson brackets
is a local field theory, in which the interacting field
possesses the local asymptotic fields ¢;, and &,.

4. RELATIVISTIC COVARIANCE
The nonlinear equation (2. 1) may be derived from the
following Lagrangian density:

L) =32(2 & + m2e2) - 120, (4.1

Using the standard technique one derives the following
form for the energy-momentum tensor associated with
the density (4.1):

T, () =0, () ,(x) = gyl (¥). (4.2

Let ¢ be a spacelike surface in the Minkowski space.
Then the integrals

P,(0)= [ do'T,,,

Mu,,(o):fudo"(x“ Ty —6,Ty)) (4.3)

are constants of motion. One verifies, using Eq. (2.25),
that the quantities (4. 3) satisfy the following commuta-
tion relations:

{Pu;Pu}:Oy {]Vluw Pl}:gﬂpu "guxpw
4.4
{Mu. Vs AIM} :gup]‘/lu)\ +gvh1"lup -8 )L]Wup - rvp‘wu xr

which are the standard commutation relations for gen-
erators of the Poincaré Lie algebra.

Let &,(x) be the free asymptotic field associated with
the interacting field ¢(x). The Lagrangian density for
the ¢,, field is given by the formula

L) =5(@1y,0 0™ +1m232). (4.5)

Using the formula (4. 2) and (4. 3), one can calculate the
corresponding generators P/" and MY, of the Poincaré
group for the free field ¢;,(x). Similarly one can calcu-

late the generators P" and M2 associated with the
free field @,,,(x).

The commutation relations of P, and M,, with the
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field ®(x) are directly obtained by using formula (2, 25).
One obtains

{¢(x)’Pu}: au‘b(x),
{&(x), My} =(x,3, = %,3,) (). (4. 6)

The global transformations (a, A) = U, 4, of the Poincaré
group / in the subset 7 consisting of all solutions of
Eq. (2.1) are given by the formula

(U(a,A)‘I))(X) = (]?[A-I(X - d)].

The generators P, and M,, of U, x, by virtue of Eq.
(4.6) are given by formulas (4. 3).

4.7

The field ¢, may be expressed as a following scalar
functional of

B3n(¥) = &) = A [ Ap(r = 1)B%(y) dby. (4.8)

The transformation (4, 7) induces the transformation
@15(%) = (U g, 2,210) (%) = &1, [A (v - @) ]

of the field &;,. Hence we have

4.9

(4.10)

Ugny= Ui(ﬁ,m’

P, =P} M, =M2,
It is instructive to derive the equality (4. 10) directly.
We show this in detail for the generator P,. By virtue

of Eq. (4.3) for a spacelike surface o(f) perpendicular
to the time axis, we have

Po(o)) =3 [y, @x[1%(¢t, %) + | Vo(t, %) |2

+ @3t X) — 5204, x) ] (4.11)

We shall evaluate the expression (4.11) for f —— =, For
the interaction term X¢* utilizing the fact that | &(f, x) |
<C{ti"3/2 for large ¢ and that [ Px$%(f, x) is smaller
than the total energy E, we have

lim [ d®x 4, %)

tamw

< lim max &*(¢, %) [ d*x ®3(¢, )
X

<limCE|t|3=0.

tomw

(4.12)
Hence by virtue of Eq. (2.3) we obtain

limPy(o(?)) = limzll@(¢, ) 12
:%”cbin(t’ * )“i‘ :P(iJn'
Because P, is time independent, we have P,=P." The

derivation of Eq. (4.10) for remaining generators may
be performed in a similar manner.

Using the Yang—Feldman, equation
Bout(¥) =@ (x) = A [ A,(x = 1) &3() dty

and Eq. (8.7) one shows by analogous considerations
that

U

(4.13)

(4.14)

(@,A) = U(():tm
and
P, =P%t M, =M%, (4. 15)

Clearly using asymptotic properties of & one may derive
formula (4. 15) directly as in case of the &,, field.
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5. SCATTERING OPERATOR

It follows from Theorem 3 that the scattering operator
defined in the subspace F of Bp by the formula S: &,,
-~ &,,, is canonical. In addition, since

ool = 11S(@, )% = 2P = 2P = ||, I3, (5.1)

the S operator is isometric. It was proven in Ref. 4 that
the Yang—Feldman equation (4. 8) has the unique solution
given by the limit of the iterative series. Hence the solu-
tion ©(x) can be written in the form

(%) ={d, + Weiey, +\WR{ -+ H), (5.2)

where Ng(-) is the nonlinear operator in the Banach
space Bp, given by the formula

Ne (D)) = [ Bglx = )33(y) diy.

The convergence of the iterative series (5.2) in By
holds in the F norm defined by the formula (Al) of Ap-
pendix A. We shall write for simplicity the iterative
geries (5. 2) in the form

&(x) = [(1 = A\NR) @) )(x). (5. 4)

Using the Yang—Feldman equation in the form ¢ =&,
+AN,(2), where N,(®)=4,+° and subtracting it from
Eq. (4.8), one obtains

(5.3)

Doy = 5, T AN(P), (5.5)

where N(&) = Ax¢3, Utilizing Eq. (5.4), we find the fol-
lowing form of the classical scattering operator:

Dout = S(D1,) = [I + AN = A\NR) " |(@4,). (5.8)

We see that S operator is nonlinear in F and different
from the identity.®

Using the fact that
(U a0, 80) (x = ¥) = Bg(x = v),
(U(a,A)A)(x - y) = A(x _y),

one cobtains

N(Uq,2,@)(x) = [U(a,m(NR@)](x)y

N(U(a,A)‘b)(x):[U(a,A)(N(‘l’))](X)- (5.7

This by virtue of Eq. (5.6) implies the Poincaré invari-
ance of scattering operator, i.e.,

UaS=SUqa, inJ. (5.8)

Finally expressing the interacting field ¢ in terms of
®out field by means of the formulas & = [1~ AN, (@4y)
one obtains that the inverse to the scattering operator is
given by the formulas

(bin :S-l(q)out) = [1" m(l_ WA)-I](¢out)- (5- 9)

The above analysis shows that the classical S operator
is a good candidate for the construction of a quantum S
operator associated with solutions of a quantized version
of the dynamical equation (1.1). We consider this prob-
lem in Paper III of our work,

6. DISCUSSION

A. We formulated the classical theory in the language
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of Lie algebra, whose commutators are defined in terms
of Poisson brackets. In Paper II we construct an oper-
ator representation of this Lie algebra. We obtain in
this manner an interacting, local, relativistic quantum
field ¢(x) which satisfies the asymptotic conditions.

B. The canonical formalism discussed in the present
paper may be extended to a class of nonpolynomial in-~
teractions where F(-) satisfies the conditions

(i) F(.) is an even analytic function,
(i) F'(w) =0(®) as u—~0,
(1ii) |F)us|~0as |u|-<.

The extension of the present results may be proven by
using, in the proofs of Theorem 2 and 3, the corre-
sponding results for a classical nonlinear relativistic
wave equation with an analytic nonlinear term. 4

ACKNOWLEDGMENTS

The authors would like to thank Professor I.
Bialynicki-Birula, Professor M. Flato, Professor R.
Streater, and Professor S. Woronowicz for useful dis-
cussions and valuable suggestions. The authors are par~
ticularly grateful to Professor I. E. Segal for the illumi~
nating discussions of problems of quantization of non-
linear relativistic classical field theory.

APPENDIX A

We summarize here the properties of the Banach
space By which is a carrier space for solutions of Eq.
(2.1). Let ®,(x) be a solution of the free Klein—Gordon
equation, whose Cauchy data at { =0 coincide with that
of &. Define 7, as the space of free solutions such that
&40, X) = @(x) = (0, X) has third derivatives in L,(R?)
and second derivatives in L,(R%), while I1,(0, x) = n(x)
=TI(0, X) has second derivatives in L,(R% and first deri-
vatives in L,(R%). Then every element of 7, is finite with
respect to the following norm?*:

llellz = suplle®)lI% + sup | (¢, ) |2
t t

P X

+f_:supls1>(t,x)]2dt. (A1)
X

Denote by 7 the completion of 7, in the norm (A1) and

by By the Banach space of all functions with finite F

norm. Then the main theorem of Ref. 4 asserts that if

&,(x) € 7, then there exists a unique solution &(x) of

Eq. (2.1) which is in By and free solutions &;,(x) and

B, (¥) such that

q)in(ty X)*"_‘Q)(t, x)_—'éout(ty x) (AZ)

Py f-w

in the energy norm (2.4). Moreover, if ®,(x)c 7,, then
®(t, %) is uniformly O(1¢1373),

APPENDIX B

We derive an useful norm inequality for solutions of
Eq. (2.9).

Lemma B1: Let ¥(¢, X) be a regular and finite energy
norm for ¢t =%, solution of the equation

@ +m2y(t, x) + V{E, D, x) = £, x), (B1)
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where V(f,x) is 2 smooth function satisfying the
condition

f_: sup | V(t, x) |dt <= (B2)

and f(¢, X) has finite norm
LA, Oy ae.
Then ¥ has finite energy norm for all £ and

||zp(t,->||§.s4eXp(;'f-1f:sgp|va,x)|dt)

x[nw(to, ST +( /0 ‘A, ->||2dt')2].

Proof: 1t is sufficient to prove the lemma for a solu-
tion § having a compact support with respect to the vari-
able x. Multiplying Eq. (B1) by 2,% and integrating over
X, we obtain

8, [ ax[(@,9)? + | v [2 +m?]
+2 [dx V(t, )0, 9 =2 [ Bxf(t, X)3,¥.

Integrating this equality with respect to ¢ in the interval
[¢,, t1] we obtain

Ho(ty, NG
= lly(ty, -)IE = zf'(‘)l dt [ dx V(t, X)93,p

(B3)

+2fytat faxfit, )2y

< ylty, HB +m™| f,;l dt sup| V(t, %) |

XIlp(e, -G +2] 52 delistt, )Mo, <. (B9)
Denoting
p(t)= sup Myt I, oft) =2m™ sup| V(t, x)],
IMACIRS! x

c= (zft‘o1 atlife, - ),)?,
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we have the inequality
t
p(t) <2p(t) + | [, ' ool dt | +c.
The n-fold iteration of this inequality gives

plty) <2p(t)) +c+2| [*1ds, [[tdsy -
k=1 0 0
X f,:k-l ds, o(s1)0(s5) + « + o(s,)(20(tg) +¢) l

+ | -!t‘:)l dsy... ft:'l-l ds,o(sy) - - ols Jo(s,) |,
but

ft;l dsy .- ft:“ ds,o(sy) + + + o(sy) = (k!)"(ft;‘ o(t) dr)t,

rdsyeoe fortds,ofs)) - ofs Jpls,) = 0;
hence
plty) < exp(| f,:* o(t) dt|)(20(t,) +c),

what proves inequality (3). QED
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We prove that the spectrum of the Kirkwood-Salsburg equation in finite volumes is composed only

of eigenvalues.

INTRODUCTION

In 1942 Mayer! suggested that phase transitions
might be connected with bifurcation of the linear opera-
tors which relate the equilibrium distribution functions
to each other. Other authors? have attempted to follow
up this idea in various ways. Unfortunately, these at-
tempts have required a multilation of whatever opera-
tor was being considered and, hence, weakened the
argument,

In this paper we will put forth an approach which we
hope will eventually lead to a rigorous justification of
Mayer’s conjecture.

In the main body of the paper we prove that the only
spectral values of the Kirkwood—Salsburg (K—S) opera-
tor in compact volumes are eigenvalues,

In the discussion we also point out that those values of
z, the activity, for which there exist solutions of the
K-S equations which do not have full translational sym-
metry must belong to the spectrum of the K-8 operator.

As was pointed out by Ruelle?® the solutions of the K—S
equation in finite volumes are elements of the linear
vector space

p1(xy)
P2 (x4, X3)

pxlxw)
where the py({x,}) are bounded measurable functions,
This is a Banach space under the norm
sup |palxab .
Y
Yixn}

The K—S operator is to be considered as acting on such
a space.

. REDEFINITION AND MODIFICATION OF THE
K-S EQUATION

Before proving any theorems about the spectrum of
the K—S operator, the operator must be defined more
precisely. The ambiguity arises because of the sym-
metry under variable permutation of the expected solu-
tions of the K—S equation.

The addition we will use will have the following form.
Before inserting a vector

1482 Journal of Mathematical Physics, Vol. 16, No. 7, July 1975

§1(x1)

&= Z;N({xzv})

into the rhs of (II. 2), the variables will be cyclically
permuted, i.e.,

éN(xi’ e 9xN)_‘ éN(x% L )xNaxi)'

I ¢x{xy}) is to be multiplied by a kernel and integrated
with respect to some of its variables, then x; will be
replaced by a dummy variable,

If £x(xy}) is to be operated on as the first term in the
sum in (II. 2), then

Evet Oy e ooy X)) ™ Evaa oy oo oy Xveg, X9)
and x; is replaced by x .

Clearly, the solutions of the original K—S equation
of physical interest will also satisfy the equation as
modified, °

The theorem we wish to prove is about the spectrum
of the K—S operator on compact subspaces in R” so
that y, is to be thought of as a characteristic function
of a region compact in R",

11. SPECTRUM OF THE K-S OPERATOR

In everything that follows the K—8 equation and
operator will be understood to be modified as described
in the previous section.

Theorem 1: The operator (K—S)
zxoK
has, for potentials which satisfy (IL 3) and the conditions
1. lim, ¢ () and lim_¢ (),
v, r oy
exist and are not equal only at a finite number of 7,
2. [ |fisldxy; <,

(v;=x)=2, |x;-x,;|<0, a>0,

-0
. ¢(x,~—x,-)>-—B, 0 <B <o,

(xi—xj):(b([xi—le):

(o2 TIN5 B~ N

.0
N cb(Ix'—le):O, lxi—xji,\y<oo,

1
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a spectrum composed entirely of eigenvalues,

Lemma 1: If we define an operator

Ji (x1) 0
: (1 +fi2)f1(x2)

(L4 F ) ot (2 = = 2y

j=2

2XaK fN({xN}) “Xa

(the variable displacement as was defined in the pre-
vious section) and an operator

f1(x1) f%(xﬂ
zxakK, . =ZXao -

T ({‘7 N} )

2

fﬁ({xjv})
S xq)
:Xni i'- /f"(xz“'xn’xmi)}ifijdxi’

=1 H

f}/(xz $t X, Xy)

SN ;1dx
j=N+l f” 7

where fl(xy+ - *xy,%;) indicates the permutation that has

taken place, then the K-S operator

zxoK
can be written as

2xaK =2xeK! +2xoK,.
This is seen trivially by inspection, °®

Lemima 2: For all finite values of z the operator
I-zyoK?
has a bounded inverse on the space of vectors

gy {xq)

cal{xad)

N finite, This inverse maps this space onto itself. Note
we are restricting the inverse to map into the space with

the same number N of components.

Proof: Let
&y¥y)

o=
vl s})

be an arbitrary vector in the specified space, Is

I=zyK! (1L 3)

onto? We have operating with (IL 3) on ¢
§1(x1) = 051'(951);

Ea(xy, %) = 2Xq (1 +f19) £1(%3) = o lxq, Xp) (IL 4)

N
ZN(XI . 'XN) - ZXa jl;é 1 +fij) Cwag (xz trexy)= @N({xﬂ’})-

1483 J. Math. Phys., Vol. 16, No. 7, July 1975

(1. 1)

(1L 2)

Clearly, there exists a ¢ such that the above set of
equations is satisfied and it is bounded. If ¢ is picked
to be the vector

0
0
=1 .

b

0
then it is clear from (IL 4) that

is the only solution. Hence
I- zygK!
is one to one, The theorem is proved.
Lemma 3: I
I—zyoit
has an inverse, then the spectrum of
M= 2xoit = 23K, =1~ zxoK
is identical to the spectrum of
M= (I = zyoK") 2y oK,
for =1,
Proof: Since
I-(I-zyoK)Y =4

maps the space of interest onto itself and is one to one,
then we have the following:

1. If (I-2zK) is onto, i.e.,
(I-zK)¢=a

has at least one solution for arbitrary « in the space,
then

(I-zK)t-a=0,
AlI-zK)£-2]=0,
(I-zAxqK) t=Aa.
Since A is an onto mapping, clearly,
1-zAyoK,
is onto.
2. If I-2zyxqoK is one to one, then
I~ zAxoK,
must be one to one because if it were not then
(I-zAxeKy) ¢ =0, ¢+0;
then
ANI-zAxoK) ¢ =0 or (I—2zygK) b =0.

The converse of these are trivial to prove in exactly
the same way as above. This clearly proves that the
spectral values are the same, In the same manner as
above, we can also trivially show that if z is such that
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1= 2yoK
is not one to one, then
I-zAyK,
is also not one to one, and the converse. It is also
trivial to show the same relationship if
I-2zAyoK,
is not onto and the converse.

Before proving the next lemma it will be useful to
introduce the following notation. An application of the
operator zAygK, to

§1("71)

£= :
Enlxysrxy)
will produce a vector
16y
r= g%(x%,ﬁ)

iy s« xy, Xy)

The bar over x, in the £} denotes that the variable
dependence x; of the original ¢y has been replaced by
an integration variable and that the variable dependence
%, of ¢ is expressed through a generalized kernel. This
will be clear if we examine (IL 1) and (IL 2) for a space

51(4\71)

Lalxy, %)

&=

Upon application of (IL 2) we have
SPACHY

=zxal | G1l) fradaa + | &6y, %3) fia iz dxy dxs],
C%xo(x2,§1)

=2xa(l +f12) | Lalog, x3) fis a2,

It is easily seen that the only dependence on x, of ;}{0 is
in a generalized kernel but not in £, The same of course
cannot be said of the dependence on x,, Applying

(1= 2xaK")7,
we have
AR Cixo(ﬂ),
£ylxy, Xp) = C%xo(xb %) + 2Xa(l +fi2) 5{1(0072)-

We retain the same properties of the variable
dependence,

(II. 5)

Lemma 4: I £" is the result of applying z({J/ -
2xqK) xgK, n times to ¢, then the last » variables
will have their dependence expressed through the
kernels (of a generalized form) of the operator [i. e.,
¢3(xy, X, X3, x3)]. I n= N, the number of variables, then
£’y has all of its variable dependence of the specified
form.

Proof: The proof proceeds by induction, For n=1, an
application of zyoK; [Eq. (IL 2)] clearly produces a vec-
tor we will label £}, which has the required property.
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The application of (I~ zxoK")™ to i, will map
elements

d"xo(xz e xy, Xq) ™ Eh(y o xy, Xy,

where
C}v(xzy I ’x)h;l)

_ N
= d"xo(xz To vy, Xy) +ZXa jl;[2(1 +fi) C}HKO

X(X3y 0 0oy XNty Xy, Kol
This clearly has the required property.
We assume that ¢” has the required property, i.e.,
EvOx D) = gy ooy Xy Xy 000 )
and prove that ¢%! has this property. Applying the
operator zyxoK, requires that first
Ehxah) =~ Ehxna, - - « s Xnat).

Variable x; is now replaced by the dummy variable and
the proper kernel is multiplied by %({x,}) and integrated.
This process produces a vector %! which has the re-
quired property. An application of (I~ zxoK’)™ takes

s XNy X1y X,

n+l . v
gNKG(xm-b e s XN K3 Xy ann 5xn~»1)
. 0¥l = = =
éNKO(xynZ’ sa sy XNy Xy, Xgy e e 7xn+1)
y n+l . oy
- 2¥q jI:IZ (1 +fij)® gN-i(erS; ey XNy Xy e e ’xn+2)-

This proves the theorem.

As this point is crucial it might help the reader if
we work out the example begun in Eq. (IL 5). Equation
(L. 5) shows that g},{o(:_cl) and Zyx (x3, %)) have the form
specified for one application of zyoK,. Applying
(I-zyoK')! gives

£LF) = the, (D),
Lh(xy, Xp) = é%xo{x'z, %1) +2Xa (L + 1) 5{1{0(’72),

which also have the proper form since the variable x,
dependence will no longer be contained in the original
¢ vector. Applying zy,K, to ¢! gives

5?1(0(?71)

=zxq | C10) fadrpdxy+ [ by, %) fio fradxy das,
551{0(51,9?2)

=zxq(1 +f1g) | Eh(xs, %y) fizdixs.
Since

ﬁ(;i) = 5%1{6(9?1)

(IL. 6)

and
G061, %) = Ly (%1, %) + 2xa (1 + 1) §%K0(’72),

making the substitutions from (IL, 5) and (I, 6) finally
gives
B&E)=2xq [ 2xa [ 6(xs) fadxy

+ | Lol %5) faa fos dx4 X5 frp dxy

+ [ 2xa(l+fog) | ooy, %) fogdry + 20 (L +fo)

Xzxq | Gy Fagdng+ | Ealey, x5) faufos dxgdxs fiafis,
® dxydxs,
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BT =2xall +£12) [ 2xal +f23) | Ealx3, %0 fagdxy
+2xa(l +f3) 2xa [ €460 Faadxy
+ [ baley, 25) fay f35dxy dxs fr3 dxs
v2xo(1 +f12) 2xa [ dxafaszxa [ £1(60) fondxy
+ [ balog, %5) foufas dxgdxs +2x [ 2xa(l +F30)
X [ Laloey, %5) fa5 d%5 fosfoa dxs dx,.

One can see from the above that the variable dependence
of the original ¢ vector appears in the above tow equa-
tions merely as an integration variable,

Before proving the next lemma we will introduce
some simple terminology. We will call any function of
the form

¢lx I II (%, = %,) dx
Jo il j})xjelx,,) xkE{xm)f( o

a ¢ graph. The finite set {x,} will be called the root
points and the finite set of integrated variables the
field points, We also specify that ¢({x,}) is a bounded
function. V is an arbitrary but finite volume.

Lemma 5: Any ¢ graph is a uniformly continuous
function of its root points for the potentials specified
in Theorem 1.

Proof: From the conditions imposed in Theorem 1 of
this section

P
f(x{_xj) = aZ)ohaO(oa_x”).

Where
%= | % =24 |,
00y =x4;)

is a continuous function of x,;,
hy=1

and

1, x4,<0
az= 10(0“—9(”):{0, x:j>aa’
b [-34

ho <c finite Va.

An arbitrary product of f;; can be written as a sum of
products of () (o, — x;;). Since the product of f,, is finite
(i. e., has a finite number of terms) the products of
00 ,= x;;) have a finite number of terms as does the
sum

’ f‘,gw(h“ "y jnkf(xj‘yk)dyk- Ex(yreoryw) !Hk (&5~ 9,)

®Q@J
<CLy | L fley=32) = T ftxy=3) | dys
<€ [yl I haO00a=|%=3])

- I O(Oa_ lx.,l-yzl)'®l;[dyk7

Joky

where J,, denotes the sum over all possible products,
Let us look at one such product:
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Jol I ha00a=|x=92 )= T ka0~ |2j=3, ]

® M dy,. (IL7)
R

Clearly,
| ln 0y~ | %5=3, )| <B<e,
1]
where B is some positive constant. Therefore, the
integrand of (IL 7) can be bounded by

|1;Iha| ?kIO(Ua_|xj—yk|)_0(oa—|x;_yk) IB
a#'0

+] jri 00— | %5~ 9, 1)‘ 0lo, - [x}—yk l)l

Therefore, (IL7) is less than or equal to
ll;lha lfv | ijO(Uo‘ lxj_yk ,)" Olog— 'x5‘3’k \)l I;[dyk

xvs’ghd!j?a fle(oa— |xj_yk ’)_O(Ua
- ’xg—yk f)|dyk-

The integrand of the first integral in (IL 8) is a con-
tinuous function (also bounded on compact support) and
therefore the first integral is clearly zero uniformly
in the limxj —x;. The integrand in the second integral
the characteristic function of the volume of the union of
two spheres minus their intersection, The two spheres

(IL 8)

‘have radius o, and are centered at x, and x}. In the

limit as x] — x, the volume goes to zero and hence the
integral. Since VS (S equals the number of field points
minus 1) and I, |2,| are finite, and all sums and pro-
ducts are finite, the lemma is proved.

Lemma 6: Given a bounded sequence
lex (Gea) [[<c wn,
where

”gN({xN})HE ‘?1{’3) J;N({xﬂl}) I s

the sequence of ¢ graphs, which we will call vy,, is con-
ditionally compact in the topology generated by the
above norm.

Proof: Lemma 5 proves uniform continuity over a
compact support. The fact that

|[ex Qb <c

then guarantees equicontinuity over compact support.
By the Ascoli—Arzela’ theorem the sequence v, is condi-
tionally compact in the norm topology.

Lemma T7: Any bounded function multiplied by vy,
gives a sequence which is conditionally compact.

Proof: Since y, conditionally compact means that there
exists a subsequence which converges in the norm to an
element in the space of continuous functions, we must
show that

T?’nK*'Y

in the space of bounded functions, We have
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lim ||y, -¥'[[=0,
nK*w

lim || Ty~ T |[< B lim |lvm=+" =0,
g ng

where B is the bound for the || 7T||. The lemma is proved.

At this point we note that due to the presence of the
hard core in the potential a volume A can have only a
finite number of particles. Let us call this number N,
Clearly the vectar of distribution functions ¢ will have
only N components. From here on we consider all
operators operating from the space of vectors

£(xy)
En(xy)
with N components into the same space.
Lemma T: The operator
(U= 2xaK') ™ xaKy)"
maps a sequence of bounded vectors
C1alry)
a-f
g Nn({x n} )

2.1 = sup 1w Bead)| <c Vn
Vil
Yy

into a sequence of vectors
¢1n(x1)
bn

b

‘.f)Nu({xN}’)

where each d),\»n({x,,,}) is a sum of a finite number of se-
quences of ¢ graphs multiplied by bounded functions.
(Note: the power N of the operator and the N of the last
elements in the vectors ¢, and ¢, are the same).

Proof: This is a trivial consequence of Lemma 4.
This means that each ¢y ({xy}) is the sum of conditional~
ly compact sequences in the space of bounded functions
with the norm

H‘f’N(JLxN}) H:VS{L}S} l ¢>N({x1v})|

Before proceeding to the next lemma we will want to
define the concept of an € net and state a well known
theorem.,

Definition: Let €> 0 be a given positive number and
M a subset of the normed space X. The set M 1s called
an € net for the set E if there exists for every point X
in E a point z in M such that

ezl <e

Theorem (Hausdovff): A necessary condition for a
subset £ of a normed space X to be conditionally com-
pact is that for each €> 0 there exisis in X a finite € net
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for E. The condition is also sufficient if X is a com-
plete space.

Lemma 8: Finite sums of conditionally compact se-
quences in complete normed spaces are conditionally
compact.

Proof: Assume there are P such sequences; then there
exists an ¢/P net for each sequence. We can then make
an € net for the sum of the P sequences by creating the
set of all possible sums of the P ¢/P nets one from each
net. Since the space is complete by the Hausdor{f theo-
rem the sum is conditionally compact.

Lemma 9 A sequence of vectors (N finite)

D1a(x1)
Pn : )
¢Nn({xN})
where ¢,,{xy}) are bounded and ¢, is an element of the
Banach space with the norm

[ én H=5(1’1‘p} | o {xat,
vs

is conditionally compact in the norm induced topology if
each of the ¢, xj} is conditionally compact in the re-
spective norms:

Hd’jn xj}H: Sup ’ (bjn{xi}"
Vix;)

DProof: Construct a finite ¢ net for the ¢, from all pos-
sible vectors of the form
71;'(751)

°

YNK({x N})

where the y,’s are members of the finite € nets for the
¢Nn’s-
We have proven with all these lemmas that
(2 (= 2xg)™ xoKo)" 1L 9)
maps bounded sequences

&1(xy)

L= :
gy nd)

into conditionally compact sequences, Hence the opera-
tor (IL 9) is compact. ® But operators with compact pro-
ducts have the same spectrum as if they were compact.
Invoking Lemma 3 proves the theorem which we now
restate.

10

The K—S operator on compact support has a spectrum
composed only of eigenvalues.

1. RESULTS AND CONCLUSIONS

The theorem proven in the previous section is useful
in two respects. (1) It indicates a possible path that
might be taken o prove something rigorous about the
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spectrum of the K—S operator in the thermodynamic
limit, (2) The inclusion of the variable permutation in
the definition of the K-S operator makes quite clear

the importance of the symmetry of the distribution func-
tions under variable exchange, It seems quite clear that
without this variable permutation the K—S operator has
quite different properties.

Although it is quite clear that the values of z*! for
which phase transitions occur must be elements of the
spectrum of the K—S operator, the converse is not
true. Consider a value of z for which there exists at
least one solution of the K—S equations which does not
have the full translational symmetry; then z-! must be
an element of the spectrum of the K—S operator since
if 0 is the translational operator

(1_ Zk) p=z,

6(I - zk) 6716p = 6z.
Since in infinite volumes

6(I - zk) 671 = (I - zk)

we have

(I-zk)bp=2z.

bp#p,

1

then 2™ is an eigenvalue of the K—S operator. This is
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clearly independent of any boundary conditions as long
as the volume is infinite.

This result though trivial is important for two rea-
sons. First, it indicates that spectral values may not
involve phase transitions in all cases, and, secondly,
it indicates that there may be a difference in the z plane
singularities of symmetry breaking and nonsymmetry
breaking phase transitions,
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Self-gravitating fluids with cylindrical symmetry
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The general solution of the Einstein field equation is obtained under the assumptions that (1) the source ot
the gravitational field is a perfect fluid with pressure p, equal to energy density p, (2) the space-time is
cylindrically symmetric, and (3) the metric is given by three tfunctions of two variables. The coordinate
transformation to comoving coordinates is discussed. The cnergy and the Hawkins-Penrose inequalities are
studied. The singularities of a class of solutions is studied using the concept of velocity-dominated
singularity. A relation between Einstein-Rosen waves and a class of solutions is shown.

1. INTRODUCTION

In a recent paper1 it was found that Einstein’s field
equations for a self-gravitating perfect fluid with pres-
sure p equal to rest energy p and four-velocity u«, is
equivalent to the field equations®

R,,==20,,0,, (1a)
00 = (V= g0,,4°%),,/V- g =0, (1b)

when irrotationality is imposed, i.e.,
Uy =0, /0, ,0"° (2)

The units are chosen so that we have for the velocity
of light ¢ =1 and Newton’s constant of gravitation G
=1/87. A comma means partial derivative with respect
to the index.

The pressure p and the energy—momentum tensor T,
are related to o by

p=p=0a,,0° 3)
Te5=20,,0,,— 90,0 ° (4)

It is the purpose of this paper to discuss the solution
of Egs. (1) when the space—time has cylindrical sym-
metry. The general metric with cylindrical symmetry is
restricted to one with three unknown functions of the
form

dst =e? @M (L = ar?) = e*H (FPe P d6* + P dz2h), (5)

where w, A, and u are functions of 7 and £. These as-
sumptions enable us to reduce the problem to one of
solving two linear equations and computing a line
integral.

In Sec. 2 we find the solution of Egs. (1) when the
metric is (5), In Sec. 3 the coordinate transformation
that enables us to write the solution in comoving co-
ordinates is discussed. In Sec. 4 the energy and the
Hawking— Penrose inequalities are studied. ® In Sec. 5,
using the concept of velocity-dominated singularity, 45
the singularities of a class of solutions are studied. In
Sec. 6 a relation between Einstein—Rosen waves and a
class of solutions is shown,

2. THE SOLUTION

The field equations (1) and the pressure (3) when the
metric is (5) are

242
Wop = Wyg = Wy/7 = Ao + Agq + Ag/7 + 2+ 1 + AF)

+2I~l1(7\1"w1)+2H0()\0—w0):—0%7 (6)
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Fto + Bkt + Ahy + (g = 0)/27 + g (g = @) + (X ~ wy)

==0¢0y, (M
Wiy = Woq = W1/7 + Mgy = Mg =~ Ay/7 +2(agg + py/7 + pf 4 2))

+ 2010 = @) + 20y (A ~ wy) =~ 0f, (8)
Pap = oo+ Brty = M)/7 = Mg+ Mg+ 2(ud = wf+ podg — pyny)

=0, (9)
g = Lo+ (B + 2)/7 + Ay = Rgo + 2(n = B = pog + sy

-0, (10)

Opy— 011+ 2000 — 2440, — 04/7 =0, (11a)

p=p=exp[-2(w - N} - o}). (12)

Where the indices 0 and 1 mean derivatives with respect
to ¢ and », the comma is omitted for brevity.

Equations (9) and (10) are equivalent to
Ao = Atp+ 2o = 2424 — A/7 =0,
Moy — Ky = 21y/7 + (u§ = uf) = 0.

(11b)
(13)

The last equation can be easily integrated.® The integral
is

e =[Ft-7r)+ Gt +7) |/, (14)

where F and G are arbitrary functions of their
arguments,

If y is known in principle it is possible to find ¢ and
X, solving the linear Eq. {11). Then, to solve the
field equation, it only remains to find w. The system of
Egs. (6), (7), and (8) is equivalent to

200wy + (1/7 + 2uw, =+ 0% + 03, (15)
(1/7 + 2wy + 21y = @ + 20404, (16)
Wpg — Wy =k — 0%+, amn
where
F= oo+ bag+ py/7 + uf +nE 05+ 23+ 2002 + 204y, (18)
@ = o/ Y+ 2hgp+ 2L ko + 2hq g + 2Xg 1y + 2N 1y, (19)
=g = g = M/T 42 = M) = pgg + pqy — wi+ (20)

Equation (17) follows from the other field equations.
Equations (15) and (16) give w as an integral,

w:flz{[guo(f+og+of)—(1/7+2ﬂl)(§0+20u°1)]d"

+[2pg(@ +2000,) = (/7 +2u)(f+od+oD)]dr},  (21)
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where
A=(1/7+2u,)? —4ud, (22)

The integrability conditions for w are the Egs. (11)
and (13). Also the existence of w is limited by the condi-
tion A#0. We notice that we can always add a constant
to w. This fact tells us that if g,, is a solution deter-
mined by ¢, A, and 6, ag,, is also a solution whenever
o is a constant,

3. COMOVING COORDINATES

It can be easily verified that the coordinate R defined
by

dR =e* (0, dr +0,dt) (23)

and T =0 transform the 4-velocity «, to U,=(U,, 0, 0, 0);
therefore, R is comoving. Equation (11a) guarantees
that the differential that defines R is exact.

The Jacobian of the transformation to comoving co-
ordinates is

T,R, 0,z

20 2 2
=e*r(oi-o
L7, 0z (03— 1),

which vanishes where p =p =0 in the nonsingular region
of space—time,

The line element in comoving coordinates is
ds®=[e*“™V /(] - oD][dT? - (™ /7*) dR’]

— et (e ™M a6’ + e dz?); (24)

this line element has a singularity at »=0.

4. THE REALITY CONDITIONS

In irrotational fluids with limit form of equation of
state p =p, the energy condition T,,u%°> 0 and the
Hawking— Penrose condition (T,,— 37g,,)#*u"> 0 Ref. 3
tell us the same, that

p =exp[— 2(w -~ A)](2-0?)= 0.

It is clear that it is possible that p be negative in
some regions of the space—time. The metric does not
have necessarily a pathological behavior when this
happens. The way of solving this problem is to fill the
region where the energy is negative with a different kind
of fluid.

We notice that R , is orthogonal to 0,,, 8,,, and 2 ,.
In the region where p <0, o,, is a spacelike vector and
R,, a timelike one. Now let R ,,G,,, 8, ,, and 2, denote
the corresponding unit vector fields. Using the fact that

Sav :R,aR,b" 0,40, 9,a9.b— Z 4%, by

the stress—energy tensor can be written as

A

_ cin b A A ~ A~ A
Top=~0,0"°(R R, +G,0,-0,60, -2 z,.).

a

This stress-energy tensor is that of an anisotropic fluid
with positive rest energy density — 0,.0°° and vanishing
heat-flow vector. In this case both reality conditions are
satisfied.

5. VELOCITY-DOMINATED SINGULARITIES

To study the solution singularities using the concept
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of velocity-dominated singularity, #° we must know the
general solution of Eq. (11) when the coefficient p is
given by (14). We did not succeed in finding it, but we
found the general solution when e® =t. This case is in-
teresting because we still have two functions ¢ and X as
“parameters.” The most general solution studied in
this context is the Tabensky—Taub solution. This solu-
tion has only one “parameter” function, >’

When e?* =t, Eqgs. (11) are

Nog + Mo/t = Ayp + /7, (25a)

Ogg +00/1 =014 +04/7. (25b)
The solution of (25) has the integral representation

fO' _/0' &(t cosu +¥ cosv) du dv

+f0 fo ¥ (¢ coshu + ¥ coshv) du dv, (26)

as can be easily verified. ® and ¥ are functions of the
indicated variables, They are restricted only in that the
integrals exist and the differentiation is allowed under
the integral sign.

We shall study the behavior of the metric near the
singularity #=0. First we notice that®

limti [ ¥ (t coshu +7 coshv) du dv
=0 ot 0 0

= /ww(r coshu) du. @7

0
Then near the singularity {=0 we get

A=E#)Int, o tg(r) Int. (28)

E and £ are the right-hand side of (27) for each solution
(26) of Eqs. (25a) and (25b), respectively.
The metric (24) when e?* =t is
ds? =[e2 @V 22 )34 aT? _ dR?/ P47
- tHe M de? +eP dzY), (29a)

where
tv
Q= / o [t +02 + 2} + 22 = 200\ +0,0y)

=N/ ] dr + (2000 + AgNy) = 7(05 + 05 + A2+ AD)

- 7/t A ]dt}. (29b)
Near the singularity £=0 from (28), we get
Q=(E+ £+ ) int, (30)

From (28) and (23) we realize that # is also a comoving
coordinate, so the metric (29) in comoving coordinates,
near the singularity #=0, is

dst= exp[2(E® + EHo/E)do?/ E? — exp[2(E? — £2 —1)o/ E] dr?
- 72exp[(1- 2£)0/E]d6? - exp[(1 + 25)0/Eldz?. (31)

The pressure near £=0 is
p=p=FE®exp[- 2(E2+62)0/E]. (32)

The metric (31) tells us that the singularity =0 is vel-
ocity-dominated with symbol P,
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P:(Eu(ﬂ-l-g 1-26 11428 3
E2+52—’2E2+52’2E2+gz' (3)
We note that $ P; =1, but § P2#1. This fact defines a
semi-Kasner-like velocity dominated singularity. °

The singularity v =0 is also a spacelike one, Near 7
=0 the role of # and { are interchanged, 7 is a time co-
ordinate and ¢ a space one. Also near =0 we have

A=E(#)Inr, 0=£(f)1n7. (34)

Via (23) we have dR={tE(t)dt so t is a comoving spatial
coordinate, In this case the P symbol is

2, ft e -
P:<E5+éﬂ—5€+1;E2+}—66+1;E2+§-6+1)'

(35)

This singularity is also a semi-Kasner-like one, It is
interesting to remark that near the singularities the
functions ¢ are completely wiped out.

6. RELATION WITH CYLINDRICAL WAVES

When p =0, the independent field Eqs. of (6) through
{11) can be cast in the form

wy =20 (0401 + X)), (36a)
wy =7t +af+ 2342, (36b)
oo = Ay — N/7 =0, {37a)
Ogy =04y = 01/7 =0, (37b)

The field equations R;,=0 for cylindrical waves with
metric

ds? =e? V(AL - dr?) ~ e 46 - e dz? (38)
are*1!?

vy=2rpouy,  vy=r(phend), (39)
1490 J. Math. Phys., Vol. 16, No. 7, July 1975

oo = Ky — My/7 =0, (40)

Putting A=ao =y, where @ is a constant, Egs. (37)
tell us the same as (40). Putting w =(a’ +1)v in Egs. (36)
they are reduced to (38). Then each solution of (36) and
(37) generates a class of solutions of (39) and (40) when-
ever A=a0. Also, each solution of (39) and (40) gen-
erates a solution of (36) and (37) doing the same identifi-
cation of functions. The pressure in this case is

p=p=exp{-2[(@®+ )y~ plHpi - p})/a.

It interesting to remark that cylindrical gravitational
waves are related to a special class of spherical and
toroidal waves, 1*12 Also, this particular class of solu-
tions can be easily related to spherical and toroidal
waves using the previous identification of functions.

*On leave of absence from Instituto de Ffsica, Universidad
Catélica de Chile, Santiago.

IR, Tabensky and A.H. Taub, Commun. Math, Phys. 29, 61
1973).

%In the present paper o is the ¢ defined in the above paper.
33, W. Hawking and R. Penrose, Proc. Roy. Soc. A 314, 529
(1970).

‘D. Eardley, E, Liang, and R. Sachs, J. Math. Phys. 23, 99
1972).

E,P,T. Liang, J, Math, Phys. 13, 386 (1972),

%The solution of (6) through (11) when A=0 was found by R.
Tabensky (private communication).

'R. Tabensky, Ph.D. thesis, University of California,
Berkeley, 1971,

SH. Lamb, Hydrodynamics (Dover, New York, 1932), p. 298,
N. Rosen, Bull. Res. Council Israel 3, 328 (1954).

103, L. Synge, Relativity: The General Theory (North-Holland,
Amsterdam, 1960), p. 352.

1., Marder, Proc. Roy. Soc. A 313, 83 (1969).

21, Marder, Proc. Roy. Soc. A 827, 123 (1972).
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Solution of the three-body problem with inverse square

potentials
Y. Avishai

Ben-Gurion University of the Negev, Beer-Sheva, Israel
(Received 13 September 1974)

The three-body problem with two-body inverse cube forces is solved by separation of the variables
into an angular and a radial one. The angular equation is an integro—differential one, which can be

solved by splines, while the radial equation is Bessel’s.

In this note we show how to exactly solve the three-
body Schrddinger equation with two-body inverse cube
forces. It appears that in this special case there is a
possibility for a separation of the variables. An inverse
square potential is not realistic as far as elementary
particles are concerned. However, there are other
branches of physics in which such an interaction may
play an important role. For example, the first correc-
tion to Newton’s Law of Gravitation is a force of an in-
verse cube nature.

In the two-body problem with central force, an inverse
square potential can be considered as an addition to the
centrifugal force in each partial wave, This is not the
case for a three-body system, since there is no partial
wave analysis for each two-body channel. For simplicity
we treat the problem of three identical Bosons in their
s state but this should not be a limitation. The Faddeev
equation in configuration space reads!®

o* & LUy
—~+:s+E- = == 7 1
<Bx2+ay2+ v(x)) Ulx,y) v(x)xyj; P dt, 1)
where

x =distance between any two particles,

y =distance between third particle and the center of
mass of the other two,

v(x) =two body interaction,
E=total center of mass energy
and where

xrt= a4 1y = (V3/2) wyt,
2
¥ =7+ 3P+ (V3/2) ayt.
The boundary conditions at zero are
U(x, 0) = U(0, y) = 0. 3)

While for large x and/or y the boundary conditions are
dependent on the physical state described by the wave-
function. For a three-body bound state, U should fall
exponentially with either x or y.

In order to solve Eq. (1) we first change into polar
coordinates

x=Rcoso¢,
y=Rsing,
0<sR <, (4)

Oso¢p <p/2.

Equation (1) then goes over into
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2 193 1 @2 )
TSR -
<aR2+RaR+R2 a¢2+ v(R coso)) U(R, ¢)

A, (8)
:v(Rcos¢)[ U(R, 6) d6,
A-(o)

in which
A(p)=|1/3-0],
7/3+¢, O0<o<y/6
A (o) =

20/3 -0, 1/6<¢d<n/2
are plotted versus ¢ in Fig. 1.
The boundary conditions Eq, (3) will now be
U(R,0)=U(R,7/2)=0.
Trying a solution of the form
U(R, $)=f(R)g($)
and dividing by fg yields
L aR) 1AfR) 1 2%(e) o

f(R) 8R®* R 3R R%g(d) 8d°

_v(Rcosp) [A+0
g s

)
£(0) do,

Up till now, the result is quite general. We now make
the assumption that the interaction is of the inverse

square form, namely,

(R cos¢)

Ny

A L)

o=

ol

o I

6
FIG. 1. The functions A_(¢) and A (6).

I
3

Copyright © 1875 American Institute of Physics

(Y=}

(5)

(6)

(7)

9)

1491



TABLE 1. Eigenvalues of the angular Eq. (12) for different
values of the potential strength.

C

2 ~6.0 -5.0 -4.0 -3.0 -2.0 -1.0
A — 56,01 —33.72 -18,66 -8,97 ~-1.87 3.19
Ay -11.04 =3.97 3.33 10.02 13.13 15.81
A3 13.91 18,65 24,71 29,37 32.13 35.72
A 42,02 48.43 55.93 59,13 61.66 62.31
C
v(Rcosd) =m——— 10
( ¢) chosqu ( )

with some constant c.

Substituting Eq. (10} into Eq. (9) and multiplying by
R? leads into a complete separation

1 P*f(R) , , f(R) )
fTéj(Rz"aEr R +R*E

1 3%g(e) c (1+ 1 [t

T T g(¢) 347
=X
say. First, one solves the angular eigenvalue problem

2%g(e) | . &(o) c Al
~ 367 T Ccosigt

+ —

®)
o #0)de) (1)

&(®) Ja_co)

o)
) dé=xg(0
o |, EO®=286)  (2)

with
8(0)=g(n/2)=0. (13)

The eigenvalues ), are then put as constants into the
radial equation

*A(R) 1 3f(R) , A,
- ~R "R —E,}:‘+;€3f(R)=Ef(R), (14)
or, with
f(R)=R*/*y(R), (15)

we have the equation
1
—y g0, - =Ey (16)

which is related to Bessel’s,
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Because of Eq. (15) we require
¥(0)=0 (17)

and for three-body bound state we must have rapid fall
at large values of R.

While Eq. (16) is easily solved by standard techniques,
this is not the case for Eq. (12), which seems unsolvable
even numerically, However, the method of splines, ?
which for some reason is not much in use among theo-
retical physicists, allows an easy algorithm for solving
such equations.

In Table I we have listed some of the eigenvalues of
Eq. 12, for different potential strength ¢. In our choice
of unites (i=m =1), the energy is given in fm™, and
hence ¢ as well as xn are dimensionless. We see that
as |cl— 0an— 422 as it should be.

For ¢> 0 all the eigenvalues are greater than ; and
the term (A\n - 3)/R? in Eq. (16) represents a repulsive
force, and there are no bound states. On the other hand,
when ¢ € -1%, we have one eigenvalue less than i, and
therefore one has an attractive term, with the possibil -
ity of having bound states.

As is well known, ? an attractive inverse square poten-
tial is too singular at the origin, and one has to impose
cutoff for small distances. If we assume an infinite
three-body well at R <gq, then the eigenvalues are found
by the equation

H&) (ivBra)=0. (18)

Here H ig the cylindrical Hankel function of the first
kind that solves Eq. 14 and falls off exponentially for
large R.

'H. P. Noyes in Three Body Problem in Nuclear and Pavticle
Physics, edited by J.S. C. McKee and P. M. Rolph (North-
Holland, Amsterdam, 1970).

2J.H. Ahlberg, E.N. Nilson, and J. L. Walsh, The Theory of
Splines and Their Applications (Academic, New York, 1967).
5L.D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon, New York), 2nd ed., p. 113.
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Canonical transforms. lll. Configuration and phase descriptions
of quantum systems possessing an s/(2,R) dynamical algebra

Charles P. Boyer and Kurt Bernardo Wolf

C.IM.A.S., Universidad Nacional Auténoma de México, México D.F., Mexico

(Received 10 September 1974)

The purpose of this article is to present a detailed analysis on the quantum mechnical level of the
canonical transformation between coordinate-momentum and number-phase descriptions for systems
possessing an s!(2,R) dynamical algebra, specifically, the radial harmonic oscillator and
pseudo-Coulomb systems. The former one includes the attractive and repulsive oscillators and the free
particle, each with an additional “centrifugal” force, while the latter includes the bound, free and
threshold states with an added “centrifugal” force. This is implemented as a unitary mapping—

canonical transform—between the usual Hilbert space [

of quantum mechanics and a new set of

Hilbert spaces on the circle whose coordinate has the meaning of a phase variable. Moreover, the
UIR’s D} of the universal covering group of S L(2,R) realized on the former space are mapped

unitarily onto the latter.

1. INTRODUCTION

In this series of articles we have explored the ques-
tion of canonical transformations in classical mechanics
and their translation to quantum mechanics as unitary
mappings between Hilbert spaces. These mappings have
been given the general name of canonical lvansforms.,

In Ref., 1 we considered the set of (complex) linear
transformations of phase space which preserved the
Heisenberg algebra of coordinate and momentum varia-
bles (resp. operators) in classical (resp. quantum)
mechanics, while in Ref, 2, upon examining the radial
part of such an n-dimensional transformation, we found
that the translation to quantum mechanics could be
implemented asking for the preservation of a radial
sl(2,R)=su(l,1)=s0(2,1) algebra built out of the n-
dimensional underlying Heisenberg algebra. In this
paper we will develop the unitary representation
(canonical transform) of the transformation which can
be formulated as follows.

Consider a classical system possessing an sl(2,R)
dynamical algebra. This means in our context that (i)
there exist three quantities ¢;(»,p,), i=1,2,3 (where »
and p, are canonically conjugate variables: {r,p,}=1)
which under the Poisson bracket operation exhibit the
sl(2, R) Lie bracket relations

{90,921 == 95, {95, 95t= G, {95 U}=, (1.1)

and such that (ii) the Hamiltonian H of the system be-
longs to the algebra, i.e., it can be written as a linear
combination of the ¢;(»,p,). Now, through SL(2, R)
group transformations, we can always redefine the
basis of the algebra so that H coincides with one of the
three ovbit representatives given by (s, ¢;, or ¢4+ 4
corresponding, respectively, to elliptic, hyperbolic,
or parabolic orbits. In each one of these cases we can
define as action and phase variables.

Po=9s ¢:arCtan(ﬂz/ﬂ1), (1. 2a)
pe=9y, t=arctanh($/4,), (1. 2b)
Pe=Yi+ G, ﬁzgz/(ﬂi*‘ﬂa), (1.2¢)

and in each of these cases one can verify that (1.1) im-
plies that o and p, (e =¢, g, £) are canonically con-
jugate variables ({a,p,}=1). The mapping (r,p,)
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—(a, p,) is a canonical transformation in the classical
sense since the Heisenberg algebras are preserved,
i.e., {r,p,}=1 {a,p.t=1, between the configuration
and phase descriptions, The purpose of this article is
to explore the quantum mechanical formulation of such
canonical transformations, We shall see that the trans-
lation is possible when the Hamiltonian takes the stand-
ard from 3p2 + V() and the generators Gi(r,p,) are up-
to-second ovder functions of p,. In this case (1.1) gives
a set of coupled differential equations which severely
restrict the types of potentials which can be considered,
and in fact the possible realizations of the algebra (1.1)
are essentially reduced to

I =5(pl= 7 +grty =5 - 1g|r|D), (1. 3a)
_QZ :%Tpr = %I‘ P, (1~ Sb)
s =5(p vt +gr ) =5 + 10 4 g|r|?), (1.3c)

with arbitrary g, where r and p are n-dimensional vec-
tors. The systems which can be described in this case
are the attractive and repulsive harmonic oscillators
and the free particle, all with an arbitrary additional
“centrifugal” potential, corresponding to the elliptic,
hyperbolic, and parabolic orbits mentioned above.

By quantization of (1.3) we mean the construction of
self-adjoint operators on the usual Hilbert space of
Lebesgue square-integrable functions ; 2(R". This
procedure is unique®* for (1. 3) and yields an sI(2, R)
algebra of operators I;(r, 3,) under the commutator
bracket, self-adjoint in the “radial” space / %(0, =), We
will show in this article that we can perform a unitary
mapping of /2(0, ) onto Hilbert spaces i {to be de-
scribed below) where the operators 5, defined in (1. 2)
are realized as - ia/a a, The difficulties of giving a
meaning in quantum mechanics to (1. 2) can be seen
clearly for the harmonic oscillator case (1. 2a) to stem
from the following problems: (i) The operator —i3/d¢
is required to have a discvete spectrum which is in-
compatible with the existence of a phase operator “h
such that [¢,p,]=1. (ii) When the operator p, is real-
ized as - ia/a¢ on [_2(— 7, ), its spectrum turns out
not to be positive-definite, The methods of treating
these (and the related problem of angular momentum
and angle observables) difficulties™® have been through
replacing the phase operator with some closely related
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ones, e.g., Toeplitz operators’ such as sin¢ and coso,
and/or constructing a representation of the Heisenberg
algebra which cannot be integrated to the group. 8

In our construction, Hilbert spaces are constructed
so that p, is a self-adjoint operator represented by
-3/ with the appvopviate spectvum. The phase
variable « retains the meaning of an underlying space.
Its operator realization (multiplication by «) is not
Hermitean. The sI(2, R) algebra and group representa-
tions are preserved and take the place of the Heisenberg
algebra and Weyl group respectively in the definition
and determination of the quantum canonical transforma-
tion corresponding to (1. 2), as a unitary mapping be-
tween Hilbert spaces, The integral transform realiza-
tion of such a mapping is the associated canonical tvans-
form. Furthermore, the unitary mapping is implement-
ed for the pseudo-Coulomb system with the classical
generators®=1?

Ky=2[r@*=1)+g"r™], (1.4a)
Ky=r-p, (1. 4b)
Ky=3[r@*+1)+g'v1), (1.4c¢)

by establishing the connection of this system with the
harmonic oscillator. Although the complete dynamical
groups for the two systems are different (the symplectic
group Sp(n, R) for the oscillator and O(n, 2) for the Cou-
lomb system), the representations of the §ﬁ(2, R) sub-
group are isomorphically related and appear to play a
fundamental role in both systems.

The developments presented here have a group-
theoretical significance of their own: On the algebra
level, we connect the realization of the si(2, R) algebra
generators on the line, as second-order differential
operators, with their realization as first-order ones
on the circle. On the group level, we relate the action
of §E(2,R)—the universal covering group of SL(2, R)—
as conformal transformations of the circle with its non-
local action on the line.

In Sec. 2 we construct the Hilbert spaces #/; where
ﬁa has the required properties and its unitary mapping
to /2(0,«). In Sec. 3 we relate the bound, free and
threshold Coulomb systems with the three harmonic
oscillator systems (1. 2). In the Appendix we establish
the connection between our spaces //; and the spaces of
analytic functions on the disk!!=*® and half-plane!* used
for the description of the sl(2, R) D; unitary irreducible
representations (UIR’s).

2. THE HARMONIC OSCILLATOR SYSTEMS AND
THE CIRCLE

A. Elliptic case

We begin with the quantum Hamiltonian for the n-
dimensional harmonic oscillator with an extra “cen-
trifugal” potential of strength ¢

2

H=5= vt e grdy, 2.1)

where V2 is the n-dimensional Laplacian and 0 <42

= |r?} <, Since we are interested in the radial part of
H only, we separate (2.1) and its eigenfunctions into
their radial and angular variables and write in place of
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the angular part of (2, 1) its well-known eigenvalues
A==L{L+n-2), L=0,1,2,---, (2.2)

viz.
H=3{-23, -

Now, the usual measure in n-dimensional radial con-
figuration spaces is #™!dr; however, to facilitate our
calculations, we can make the similarity transforma-
tion H — @172 ®-1>/2 " which brings the measure to
simply d» with the corresponding formal differential
operator

I _uy(n-i)/zHy-(n—l)/2_,{_a +1,. +[2k—1 _4]/7/.2}
(2.4a)

[t =1)/7] 8, + 7%+ (g = N/} 2.3)

where

2k =12[(Gn+L-1)2+g) 72 (2.5)

Now, for k=1, the spectral analysis of (2. 4a) is well
known'® and there is a unique self-adjoint extension such
that the normalized eigenvectors are

k() = [2N1/T(N + 2k) Tt 1251212, 2021 127, Gre1) 2y 2. 6a)
where
Likr) = (N+R)W(r), N=0,1,2,---, (2. 6b)

and where Lff"(z) are the associated Laguerre poly-
nomials. ¥ In the case that (2k - 1) <1, both solutions
to the eigenvalue problem for I; are square-integrable
in the neighborhood of » =0, and we must implement an
additional boundary condition there, In this article we
are interested in exploring the eigenvalue problems for
I; whose spectra are bounded from below corresponding
to the discrete series of representations Dj of SL(2, R).
This corresponds, for the spectral analysis of I; with
<k <1, to implementing two different boundary condi-
t1ons which yield {¢%4} and {47%*!} separately as complete
sets of orthonormal eigenvectors. The second set can
be described equivalently by extending the range of &
to 0 <k <1, Indeed the richer structure displayed in this
interval has been noticed by Sally!® and Montgomery and
O’Raifertaigh. 17 Other boundary conditions correspond-
ing to different self-adjoint exte;g)sions of I; give rise
to the supplementary series of SL(2, R).

We complete the Lie algebra of ?E(z, R) by adding the

generatorsio.ig_zo
I =i{= 8, =7+ [@k - 1) = 3]/7%}, (2. 4b)
12:_52'(7/8,,+%). 0. 40)

1t is straightforward to verify that (2, 4) satisfy the
well-known commutation relations

(1, L]==ily, (I3, L] =ik, [L,I]=i] (2.7a)

and

P+l -1}=k(1-F). (2. 7o)

The common invariant domain where the operators
(2. 3) as well as the Lie products (2, 7) are densely
defined is taken as {fe/ %(0, =) : IZf / 2(0, )}. Further-
more, as discussed previously, the generators (2.4)
can be integrated20 to a unique unitary representation of
§.7:(2,R)) For the general element of SL(2, R)
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c d (2. 8a)

§f,(2, R) is defined from the universal covering group of
the compact subgroup SO(2). Explicitly, for the matrix

gz(" b)eSL(Z,R), ad-bc=1.

1 PR

CcoS3w sinzw .

. <~ exp(— iwl 2.8b

(— sinjw coséw) p( OF ( )
we now allow — © <w <, The other one-parameter sub-
groups are, with their corresponding representations,

coshia sinhia ) - .
(sinh%a coshia exp(-ialy), (2. 8c)
where 0 < a <« and
L /2 0 .
( 0 e-s/Z) —exp(=ihh). (2. 8d)

Associated with a general element of SL(2, R) with b+0
we have the group action®!%2!

(Tef))

= |b| exp(xink sgnb)f dav'(rrHt/?
9

Xexp(__ (a’)"2 +d’}’2)> JZk-I(l Bl )f( ’) (2.9)
where fe /%(0,=) and g SL(2, R). The integral is
understood to be in the sense of limit in the mean.
Equation (2. 9) can be extended to the entire range of

the parameter w in ,(\2_/ 8b) and thus to the whole univer-
sal covering group SL(2, R) through exp(- 2inl;)
=exp(- 2imk). When b=0, we have the local action
al

(T )) = |a|/? explEc/2|a|)r*] A (2.10)

We mention here that the ordinary (g =0) n-dimen-
sional g\chillator of angular momentum L belongs to the
UIR of SL(2, R) with k=3L +in, i.e., D} jp,n/q. For
n=3, the oscillator states are spanned by the direct
sum of UIR’s D; ;& D5 ,4® - --. For the casen=1
(g =0) the situation is somewhat different: The differen-
tial operator (2.4a) is no longer singular at the origin
and the O(n) rotational symmetry represented by the
quantum number L is replaced by the two-element group
C, of reflections, whose two representatlons are given
by L=0 and 1 in (2.2). The corresponding SL(2 R)
UIR’s are D}, and D3, corresponding to even and odd
functions respectively.

We shall now construct a unitary isomorphism of the
Lie algebra si{2, R) and covering group SL(2, R) rep-
resentations on Lz(o,oo) onto the corresponding algebra
and group representations on the circle S! with a suit-
ably defined inner product. Our realization for the Lie
algebra sl(2, R) on S! is the algebra of formal differen-
tial operators!!r1?

I=—1id,, I,=e*®(-id, k), (2.11)

where I, =1, +il, and I, I, I, satisfy (2 (2.7). For the dis-
crete series of UIR’s D} (k= ) of SL(2 R), the in-
finitesimal generators satisfy the well-known relations

Ligh=m (2. 12a)

Lgt= [ (m+1)+R(1 =R /2g%,,, (2.12b)
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Leh= 2= min=1)+k0 -1, (@. 12¢)

m-1

where 19,/ =1, on a normalized set of basis vectors

{g%} with the spectrum m =k,k+1,-+-, thus I_gk=0.
Putting
(@) =yalk)e™?, (2.13a)

one can see after a straightforward calculation that
yu(R) =[T(m +R)/T(2k)T(m =k +1)]/2 (2.13b)
with 9,,=1.

We will now construct an inner product on S!. This
can be done by demanding that the {g*} form an ortho-
normal basis; however, we prefer to derive our inner
product in the manner of Refs. 1 and 2, which elucid-
ates the type of functions we are working with. We
write down a general bilinear functional on a “nice”
space of functions on S! and require the operators (2.11)
to be Hermitean. It is easy to see that this inner prod-
uct cannot be of the usual type for /2(S!), (f,2)
=" def(d)*g(p) unless k=3 +ip with p real. This is the
principal series of UIR’s of SL(2, R). Since we are
treating the discrete series Dj, this is not in general
the case (except for D7 y).

Now from the outset it is clear that we are dealing
with multivalued representations, where the multi-
valuedness is determined by the real number k= ;. We
therefore consider the space 7, of infinitely differentia-
ble functions on S! such that f(¢ + 27) = expmik)f(P).
Furthermore, consider the space &(7,) of continuous
linear functionals?? on 7,

Q)= @,1) = [1d9'QUs, 6')(9"). (2.14)
We can define the inner product
(fis foo= (f1, Q(f))
= Jadodo'2(e, ¢")fi(6)*A(4"). (2.15)

The Q(¢, ¢’) can be determined from the hermiticity
conditions for the generators (2.11). First, demanding
the hermiticity of I, i.e., (I3, f, o)y = (fi, Is/2)r, we find
the conditions

o, ") =0 - ¢),

Now any f< ¥, can be expanded uniformly in a Fourier
series,

Q¢ +27m) = exp(2mik)Q(p). (2. 16)

fl@)=exp(iko) H_Em a,(2m)t % expling), (2.17)
and, by applying to it the lowering and raising operators
1, it is clear that 7, is reducible since the subspace of
functions 7; with Fourier coefficients a,=0 for » nega-~
tive is invariant under the action of (2.11). The space
F» is nof completely reducible, however, but the re-
striction of the Lie algebra representation (2.11) to

#& is irreducible,

For any fy, f; € 75 consider the hermiticity conditions

(flylth)k: (I:Ffbfz)k- (2.18)

A straightforward calculation involving integrations by
parts yields the condition
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J Js1dede'fi(9)*e* f(@M)ile™ - 1) + (e - 1)(** +1)Q]
=0. (2.19)

where 0= ¢ — ¢’ and Q,=d%/d6. One is tempted to set
the term in brackets in the integrand equal to zero and
solve the resulting differential equation. Upon doing so,
the solution is €(6) =c(1 - cos8)*!. We can verify that
the Fourier expansion (2.17) of § contains only negative-
n partial wave coefficients and thus is a member of
®(7;), where 7+ is the complement of 7} in F4 Hence
(fi, Q(f2)) =0 for any f,, f, € 7; and such a solution is
worthless to us.

By inspecting (2.17) a bit closer it is seen that the
vanishing of the terms in the square bracket of (2.19)
is only a sufficient condition for the vanishing of the
integral. Indeed, (2.17) is satisfied if the term in
square brackets is orthogonal to exp(i¢’)f5(d’) € Fpui.
So a necessary and sufficient condition for (2.17) to
hold is

119 + (B = 1)[exp(E6) + 1]Q = w(8) + c exp(ik6),
(2. 20)

where w(@)c <1>(] +) and ¢ is a constant. Since any mem-
ber of ®(7}) is useless to us as an inner product for
F# we discard @(0) and look for a solution < ®(7}) of

iexp(i6) — 1]1Q,+ (- 1)[exp(i8) + 1]2 = c exp(ik?). (2.21)

When we propose as a solution of (2. 21) a series of the
kind (2. 17) with coefficients w,, we find this provides
two independent solutions: One, for n> 0, yields the
recursion w, =w!/(2k), in terms of the independent
constant w;, while the second one, for n <0, yields the
recursion in terms of w_;. The latter series gives rise
to Q and we thus discard it. The former series is thus
our solution Q< ®(7;) and, choosing w,=1/47%,

o

20)= 2

ms=,

i[exp(i®) -

A, (k) exp(im6)

(é\;;w expli(k + N)o]

ZMS

1
47
1

= 47 expikO)F(1, 1; 2%; exp(i6)). 2.22)

This series'® converges absolutely for k> 1, condition-
ally for 3 <k <1 (excluding 6=0,27,---), and for k=3
it diverges on S!. In the last case appropriate limiting
arguments must be used in order to evaluate the double
integral (2.15). For 0<k <3 the series (2.22) can still
define a scalar product even though the series
diverges. ' Comparing the coefficients in (2. 13) and

(2. 22), we find the important relation

A (R) = (27, (R) ] (2.23)

which quarantees that {gfn} is an orthonormal set under
the scalar product (2. 15). Equation (2. 23) would have
defined A, (%) in the series (2. 22) had we decided to find
© from the requirement that {gfn} form under (2. 15) an
orthonormal basis.

Now consider the inner product (2.15). We have for
any fi, fo © 7, after some integrations,

(fi,fo)rTa b (), (2.24)
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where a,, and b,, are the ordinary Fourier coefficients
for f; and f; respectively. We find from (2. 22), for

E>zand m=Fk +N, N nonnegative integer, that 0
<4m),(k) <1 and 1 (k) ~ 0 as m — 0 while ara,(3) = 1.
Thus the norm

o<|lrli= fJan)me () < 23 |a,|?

)

< \a |2 <o
S

(2. 25a)

is dominated by the Hardy— Lebesgue norm? H* as well
as [/ *(= 7, 7). The members of H are the boundary val-
ues almost everywhere on S! of functions analytic in the
unit disclz| <1 completed with respect to the norm
IF2=sup [ d¢|ftrexpe))|?=2 |a,|% (2. 25b)
0<r<1 m=k
Thus, for k=3, closure gives the Hilbert space H?,
Notice also that when 0 <k < § the first inequality in
(2. 25a) is reversed; nevertheless the norm ||f||, is de-
fined by its series. Norms of this type were discussed
by Sally'® and are related to certain reproducing kernel
spaces.

Using (2. 23) and (2. 24) we have

(fiyffZ)k 2 flygk) gfmf?

for fi,f> € 7,. Indeed, from (2. 25) we can extend (2. 26)
to all functions f;, f, € H2. Now H? is not closed with re-
spect to the norm |{f||,, but by adjoining the limit points
we obtain a Hilbert space which we denote by #/;. The
connection between the Hilbert spaces //, and those of
analytic functions on the disc will be ellaborated upon
in the Appendix.

(2. 26)

Some further interesting properties of the linear
functional Q(f) defined by the kernel (2. 22) can be seen
by viewing £ as a Hermitean operator on Lz(— w,m). It
annihilates all fe 7; and hence all members of [H=m,T)
which are limits of such f. For k> 3 it is compact (com-
pletely continuous) and hence self-adjoint with eigen-
values 1, (k). Gel’fand and collaborators'? have used
such operators (for k=1,3,2 .--) to describe equiva-
lences between representations labeled by % and — 2+ 1.

Another linear functional in &(7;) which can be ex-
tended to all of // is the reproducing functional given by
the formal series

K(0, 8" =2 g(0)eh (6

=exp[ik (o — ¢")](1 - exp[i(¢ — ¢ )2 (2.27)

Clearly this series diverges at ¢ = ¢’, but nevertheless
defines a continuous linear functional on #;, viz.,

f@)=] [qdo"de'qe" - ¢ K(p, ") (¢").

We will now construct a unitary mapping which maps
1.2(0, ) onto /+ and the infinitesmial generators (2. 4)
onto {2.11) and conversely. The statement that the Hil-
bert space //; maps unitarily onto LZ(O, ) and converse-
ly is almost trivial, since all separable Hilbert spaces

(2. 28)
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are unitarily equivalent. We see easily that / (0, ) =12
= /{, where {? denotes the space of generalized Fourler
coefficients {c 4}, N= 0 1 2,-+-, such that 35, lcyi? <.
We have for any ¢< /2(0, )

Pir) = NZ}) ¥k (), 2. 29)
where {#i} are given by (2. 6) and convergence is in the
mean. Thus (i, ¥) =S lcy|2 <. But from (2. 22) for
any {cyt< 2 we have an f< 4/} such that

)= NZ:% cn Zron(P) (2. 30)

converges in the mean and hence (f,f),=Yx.q leyl?

= (d)y (p).

1t is clear that the above statements are if and only if
statements with the only proviso that both $() and f(¢)
are defined up to sets of measure zero. It is now a sim-
ple task to construct this mapping explicitly as

(A)($) =Li m. [ drAlg, V@) @2.31)
for y< /2(0, =), where
A9, 7= T OO
=[2/T(@2k)]' /2?1 2 explik )1 - expli¢)] ™
x exp[(#7/2)(e*® +1) /e*® - 1)]. (2.32)

This kernel is singular at ¢ =0, which in an intuitive
sense is offset by the strong convergence in the 4/
norm. The inverse mapping is given by

@ ® =Lim. [ [ dede’ - oNAG, ("),
(2.33)

for any fe /. We stress that the unitary transformation
kernel A(¢p, ) is a unitary representation in quantum
mechanics of the classical canonical transformation

(1. 2a). This is what we call a unitary canonical
transform.

Now the important consequence of the unitary map-
pings (2. 31) and (2. 33) is that the group representa-
tions, or equivalently the Lie algebra representations
(2.4) and (2. 11) are unitarily equivalent. A straightfor-
ward computation shows that the operators I, =I; +7], in
the representation (2. 4) satisfy the Lie algebra identi-
ties (2.12). Then using (2.31)—(2.33) and a simple in-
tegration by parts yields the desired results, The do-
main of the Lie algebra products is mapped onto each
other and as a subspace of I? is given by all {eafe 1 such
that o, miicyl® <, Furthermore, the SL(Z R) group
representation on //; can be obtained from (2. 9) and
(2.31) by U, :ATA,A'I yielding explicitly

(U ) (@) = |1+ 9% exp(= i) |1 - ||
Xf(eXp(t'w)[y +expd)/[1+v* explig)]),
(2.34)
for f& /. Here we have used the SU(1, 1) variables de-

fined from (2. 8a) as

a=glardsilc-b)], B=ia-d-i(b+c)),
(2.35)
')/:6/01

w=2arga,
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We mention that the representation (2. 34) is equivalent
to the representation U'(g, k) of Sally if we replace in
(2. 5.5) of Ref. 13 the complex variable z by its bound-
ary e'® and perform the similarity transformation
exp(ikp)U, exp(~ ik ). For the connection between the
representations described in this section and the usual
treatment on the unit disc /), the reader is referred to
the Appendix.

We now pass to the description of a basis where a
noncompact subgroup generator is diagonal. 3 As is
well known, there are three orbits in the Lie algebra
si{2, R) under the adjoint action of the group SL(2, R).
One of these orbits (the elliptic one) gives rise to the
basis described previously (i. e., I; is diagonal), We
proceed to give a brief description of the remaining
two cases.

B. Parabolic case

In this case an orbit representative of the generators
(2. 4) is given by the radial free Hamiltonian

L+I=4{~8,,+[(Qk-1)°-51/"}

The eigenvalue problem thus gives rise to the general-
ized orthonormal eigenfunctions

Per) = (r8) Wy, (rs)

with eigenvalues 3s®. We also mention that an orbit
representative which is simpler but with no physical
meaning is I; - J; = 37, The relation between the two is
given by exp (L) (I, +1;) exp(—inly) =I; - I,. We em-
phasize that harmonic analysis®®?® in terms of the latter
is simpler than in terms of the former. Nevertheless,
it is the former we are interested in, because of its
physical meaning,

(2.36)

(2.37)

Our unitary mapping (2. 31) can be extended in the
usual way to operate on a suitable space of generalized
functions®? containing the eigenfunctions (2. 37). This
means that the generalized eigenfunctions have a mean-
ing as the kernel of a particular transform (in this case
the well-known Hankel transform) when applied to any
¢ /%0, ). In this sense then the basis elements (2. 37)
are mapped unitarily onto generalized eigenfunctions
g%(¢) of the operator I, + I, realized on the circle, In
terms of the realization (2. 11) we find

I +I;=—i[(1 +cos)d, — ksing]. (2.38)

This operator becomes more transparent under the
stereographic projection of the circle onto the real line
given by

¢=tanio, (2.39)
First we note that the space 7; on S' maps onto the
space (called again 7;) of infinitely differentiable func-
tions which decrease at infinity as £** (see the Ap-
pendix). The multivaluedness of functions on S! implies
definite phase properties for the corresponding func-
tions of £ as £~z <, This is specified by choosing the
principal branch of Inz to correspond to the range
-7 = ¢ <mw, so that

—nsd)<71, -—00<§<oo.

. g (7- E)k
k explkl
exp(ik @) = xp< n- +E> e (2.40)
Then (2. 38) in the ¢-space realization becomes
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11+13:-i(a, (2. 41)

2¢
£2 4 1>
The generalized eigenfunctions of (2. 41) then have the
form of a multiplier times the Fourier transform
kernel with the phase inherited from the unitary map-
ping (2. 31). Actually it is a simple calculation to ob-
tain the eigenfunctions directly by applying (2. 31) to
the orthonormal basis functions (2, 37), viz.

2 (6)=(AP)(0) :égqu)(m, ),

where (¥%, %) are the overlap functions between the
canonical basis (2. 6) and the parabolic basis (2, 37).
These overlap functions become trivial to calculate if
we transform the ¢f to a point on the orbit where I, - I,
=472 is diagonal with generalized eigenfunctions if;('r)
=exp(ink)d(r — s), We find

(W, ¥5) = (expGnL)dy, expGrly)dh)
= (exp TN + k)i, TF) = exp(— inN) P (s)*

Hence, the properly normalized (including phase) gen-
eralized eigenfunctions on the circle are, using (2. 32),

() =explEnk)A(p — 7, s). (2. 42¢)

This calculation shows the close connection between the
unitary mapping of Lz(O, «) onto 4/, and the parabolic
basis. In terms of the £-space realization we find the
form

2o () =[T(

(2. 42a)

(2. 42b)

(28) ]2 (55) 21 /2(1 + £5)® exp(3isPE).

(2. 42d)

It is readily checked that these functions are eigenfunc-
tions of (2.41) with eigenvalues 3s°. Actually, since
s?= 0, this is the half-space Fourier transform which
is in complete accord with the fact, as discussed in the
Appendix, that the members f(£) € #; in the £-space
realization are the boundary values of functions f(w)
analytic in the upper half-plane Ime > 0 with Rew = &.

C. Hyperbolic case

In this case an orbit representative is given by the
generator I; which is one-half the Hamiltonian for the
repulsive harmonic oscillator. The eigenvalue problem
is

Lk = v
However, a much simpler orbit representative is given
by the generator I, with the relation

swily)=1,.

(2.43a)

exp(3mil)], exp(-
The eigenvalue problem for I, is
12%(7) = %V%(T)’

with normalized generalized eigenfunctions given by the
well-known Mellin transform kernel

k) =
with — 0 <pv <o, Using (2. 9) to transform these func-
tions to the corresponding basis functions for I, we
find

k() = @mr) 1 /2 explink) exp(Grv)27 /2
X[T(k + 3iv)/T(2R)IMy,, j2, et 2= 172,

(2. 43D)

(@)1 /2wt /2, (2. 44)

(2. 45)
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where My, /5, .1 /2(2) is a Whittaker function. ¥ We wish
to effect the mapping of the functions (2. 45) to the gen-
eralized eigenfunctions on S!. These will be eigenfunc-
tions of the operator

(2. 46)

which satisfy (2. 43a). Again, using the stereographic
projection given by

I =—i(cos¢d, — k sing),

t=tan[3(¢ +3m)], = 3m<¢<im, (2.47)
we can write (2. 46) as
Ii==i[£a, - k(£2 - 1)/(E + 1)]. (2. 48)

Now the unnormalized generalized eigenfunctions of

(2. 48) which satisfy (2.43a) are (g2 +1)*¢*¢!*/2 where
g, =¢for £>0and 0 for £ <0, while {.=- ¢ for £ <0 and
0 for £>0. The correct normalization and phase for
these eigenfunctions can be determined from the map-
ping (2. 31). Alternatively, following the same procedure
as in the parabolic case, we can write the eigenfunc-
tions on the circle in terms of the Mellin transform of
A, viz.

)=
Integrating this expression, we find explicitly
gH(p) =exp[F yin (2k +iv)] exp(ink)2 /2*-1{7 T (2k) ] /2
XT(% + 5iv){sin[3(¢ + 2m) |} [tan[5(¢ + 3m)] |72,
(2. 50)

where ¥ is taken for — 37 <¢ <zmand — fr < <- 37
respectively. In terms of the variable ¢ the eigenfunc-
tions are

20 (0)) = exp[F 1im (2k +iv)] exp(nk)2™ 2+ [z T (2k)]1/?
XT(k+5v)(28 +1)%| g | /2=, (2.51)

@m! ”f dr A(¢ +3m, v)rivt/2, (2.49)

We remark that in the process of evaluating the integral
(2. 49) we have evaluated the more difficult integral of
A(d,7) in (2. 32) with the Whittaker basis functions

(2. 45). This demonstrates the power of the group the-
oretical approach in obtaining special functions rela-
tions and is in the spirit of Refs. 21 and 24, where
more difficult integrals are obtained. One further point
is that the multiplicity of the hyperbolic decomposition
for the representations D; is one in contradistinction to
multiplicity fwo for the pr1nc1pa1 series'®?3 of SL(2, R).
This is apparent in the / 2(0, ») realization, but in S1 it
is deeply hidden in the nonlocal measure. For example,
from (2. 51) one is led to think that the multiplicity is
two—one Mellin transform for each half-axis. How-
ever, as discussed in the Appendix, the Hilbert space
#r in the {-space realization consists of boundary val-
ues of functions f(w) analytic in the upper half-plane
Imw > 0 with Rew = £; hence, one can relate the two ap-
parently independent Mellin transforms by using
Cauchy’s integral formula.

3. THE PSEUDO-COULOMB SYSTEM

The Hamiltonian for the n’-dimensional Coulomb sys-
tem with an extra centrifugal force of strength g’ is
given by

(8.1)
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where 7= |ri. It is to be noted that (3. 1) is relevant in
the relativistic Coulomb problem. 25 The standard trick®
for introducing the sl(2, R) Lie algebra is essentially to
turn the standard eigenvalue problem for the energy

(3. 1) into an eigenvalue problem for the charge g by
multiplying (3. 1) by », viz.,

(rpP = Ev +3g'7™ - )2(r)=0. (3.2)
Then upon introducing the Lie algebra generators

Ky =3lr@ -1)+g'v], (3.32)

Ky=r-p—i(n'-2)=vp,—iln’~2), (3.3b)

Ky=3[r(p*+1) +g"r™], (3. 3c)
Eq. (3.2) can be written as

(G- E)K3+ (z + E)K ~ q]e(r) =0. (3.4)

A. Elliptic orbit (bound states)

There are three different solutions to (3. 4) depending
on which orbit the operator (3. 4) lies. The case E <0
gives rise to the bound state solutions of the H atom,
while for £ > 0 and E =0 one finds the scattering and
threshold solutions. For E <0, the automorphism
exp(i6l,) called “tilting” by Barut and Kleinert, ? where

E++ |E|-

tanh&:E_%:—Tré, (3.5)
transforms (3. 4) into

[(- 2E)' *K3 - q1&(r) =0, (3.6)
where &(r) = exp(i6L,)®(r).

Now we could insert (3. 3¢) into (3. 6) and find the
standard differential equatlon however, we already
know that for the UIR Dj of SL(Z R) the spectrum of K,
is simply m =k + N, Thus we have

g=(-2EM*(k+N), N=0,1,2,- (3.7a)
where
2k =1+[(n'+2L' -2 +4g"1'/% L'=0,1,2,-
{3.7b)

[Note the difference between (3. 7b) and (2. 5)]. Turning
Eq. (3.7a) around as an eigenvalue problem for E, we
find the usual (at least for integer %k, i.e., g’=0) result

E==3¢" [k + N). {8.7c)

It is this interpretation of (3. 6) as an eigenvalue prob-
lem for E which suggests the name pseudo-Coulomb!®
for Eq. (3.4) and the Lie algebra (3. 3). Indeed, the
transition between the two prcblems is canonical only
for fixed E, as can be seen from the transformation of
the coordinate # under the “tilting” operation

expl(i6 K,)rexp(—i6K,) = (- 2E)! ' =p, (3. 8a)

and thus it is seen that &(r) = ®(p). Moreover, by using
(3. 38b) the canonical conjugate variable to 7, p,, trans-
forms as

exp(i6Ky) p, exp(—i6K,) = (- 2E)1/%p =p,. (3. 8b)

It is emphasized that what we have shown here is that
the “tilting” operation of Barut and Kleinert is equiv-
alent to the replacement of » and p, in the generators
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(3.3) by the pair p,p,. Furthermore, if »,p,isa
canonical pair then p, p, is a canonical pair only when

E is constant. Again, turning the problem around, we
can start with p, p, as a canonical pair obtaining #,p, as
one only for constant E. This is the pseudo-Coulomb
problem, and it is this problem which can be mapped
canonically by a simple point transformation onto the
multidimensional harmonic oscillator'®2 and hence onto
the circle S! through the analysis of the preceeding sec-
tion. Nevertheless, this group-theoretical treatment?®
of the hydrogen atom has had remarkable success in
calculating transition amplitudes, form factors, etc.

Rewriting the operators (3. 3) in terms of the variables
p,p, defined in (3. 8), we see that (3. 4) becomes the dif-
ferential equation for the radial part of &{p) which we
denote by @(p),

= p,,— (0" = 1)2,= (A" = g™ + plo(p) = me(p),

(3.9a)

where as before m =%+ N and is related to E through
(3.7a), and, as in (2. 2),

M==L'(L'+n'-2), =0,1,2,---, (3. 9b)

Now again the spectral analysis of (3. 9) with the proper
boundary condition on ¢(p) yields the allowed values of
m as

m:N+k:N+§+[(§n'+L'—1)2+g’]1/2, (3.10)

where we have introduced %k in (3. 7b). Equation (3. 9a)
can now be turned into the analog of Eq. (2.6) with an
operator Hermitean with respect to the measure dp
(pc[0,)) through a similarity transformation mapping
functions as ¢(p) — ¥'(0) =p"/%L¢(p) and operators as

Ky = Ki=p"/"IKp /2, vig,

K3i(p) = miPi(p), (3.11a)
§=3[=po,,=8,+p+ (k- 2], (3.11b)
P(p) = [2N1/T(2k + NY]1/2pk-1 /200 @e=(25) (3. 11c)
and similarly for the operators (3. 3a, b):
Ki=3[-p2,—2,~p+(k-27p"], (3.11d)
f==ilpd,+3). (3.11e)

It is to be noted that the ordinary (g’ =0) »n’-dimen-~
sional pseudo-Coulomb problem with angular momentum
L’ has k=L’ +3(n’ - 1) and thus belongs to the UIR
Dieiirqy o Of SL(2,R). For n’=3, the bound states of the
system belong to the direct sum D¢ D¢ -

We can now establish the link with the harmonic oscil-
lator system. Indeed, if we take Egs. (2.4a), (2. 6a),
and (2. 6b} and effect the following:

(i) A change of variable p=37? as suggested by the
classical analogue (1, 5); we obtain an operator (resp.
eigenstates) Hermitean (resp. orthogonal) with respect
to the measure dv = (2p)~!/?dp by simply following the
chain rule for the derivatives.

(ii) A similarity transformation ¥(p) — ¢'(p)
=(20)"*p(0) and I; ~ K= (2p)" 1/41](2p)1/4 takes us to
eigenstates (resp, operators) which are identical with
(3.11c) [resp. (3.11b)] when
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(iii) We identify

g=4g¢’, L=2L', n=2n'-2. (3.12)
Implementing this transformation, the spectrum-gen-
erating algebra of the pseudo-Coulomb system is ob-
tained from the operators (2. 4a, ¢) yielding precisely
the operators (3.11d, e). We see that the ordinary
(g’ =0) n'-dimensional pseudo-Coulomb system of angu-
lar momentum L’ belongs to the UIR Dye,(r.1) /2 = D7 240 /4
of SL(2,R). Thus, for example, the states of the three-
dimensional Hydrogen atom (»'=3, L’=0,1,2,---) are
mapped onto the even-angular momentum states of the
four-dimensional harmonic oscillator®’ (n=4, L
=0,2,4,--+) with the representation given by D{® D;
@ ---. We emphasize that the condition (3. 12) and hence
the mapping between the two systems is nof a necessary
one. Other possible mappings of the Hamiltonians were
discussed in Ref. 26. Our choice (3. 12) has the ad-
vantages of associating extra centrifugal potentials with
each other as well as mapping states of zero angular
momentum onto states of zero angular momentum.
For n’=2, n=2, the mapping is the one described in
Ref. 10.

A similar analysis can be effected for the two non-
compact orbits,

B. Parabolic orbit {threshold states)

As the energy here is constant (zero), this is the only
truly canonical mapping between the real Coulomb sys-
tem and the system (2.4). In this case (3.4) becomes
simply

[3(K5+K;)—qle(r)=0, (3.13)
where, from (3. 3),
Ky+Ky=7p*+g'r™. (3.14)

Implementing the necessary similarity transformations
which led to Egs, (3.11) and replacing the variables »
by p and p, by p,, the corresponding generator becomes

K§+K1’:_papp—ap+(k—§)2p'1. (8.15)

Making again the simple change of variables as well as

the similarity transformation (ii) and the identification

(3. 2), we find precisely the operator for the radial free
particle (3. 26) with the generalized eigenfunctions

PR (p) = 12Ty, 4 (s(20) /7).

We mention here that in complete analogy with the
parabolic orbit in Sec. 2 the harmonic analysis in terms
of the operator K} - K{=p is much simpler.

(3.16)

C. Hyperbolic orbit (scattering states)

The case E > 0 gives rise to the Coulomb scattering
states. ? Now Eq. (3.4) can be brought to the eigenvalue
problem for K, by the “tilting” operator exp(i0K,),
where now

E+% |El+3%

1
_ z__&l+z.
tanhe_E—é_lEi—é’ (3.17)
and we arrive at
[(2E) 2K, - q)& =0, (3.18)

which again is equivalent to the replacement of » and pf
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by p and pf, respectively. Under the transformation
(3.16) we have

p=Q@EY /%, p,=QE)'%,, (3.19)

in lieu of (3. 8). Again it is emphasized that for calcula-
tion purposes it is much easier to deal with K,

= exp(~ 3miK;)K, exp(;7iK,) and the corresponding Mellin
transiorm. Here we simply write down the eigenfunc-
tions of the operator Kj [(3.11d)] obtained from (2, 45) by
the point and similarity transformations (i) and (ii) de-
scribed above with the identification (3.12), viz.,

Tk + 5iv)

V5() = (2m)™ /2 expink) exp(imv)2™ /7 T(2k)

(2)7 2

(3.20)

We have shown that the spectrum-generating algebra
so(2,1) =sy\()1, 1) =sl(2, R) [as well as its universal cover-
ing group SL(2, R)] for the pseudo-Coulomb problem
maps unitarily onto the radial harmonic oscillator sys-
tem and thus through the composition maps onto the
circle S!, It is emphasized that this rotor has a nonlocal
scalar product in order to preserve the positive
definiteness of the bound-state spectrum. A similar
situation can be found in the original work of Barut and
Kleinert, ® and Fronsdal, § where a nonlocal scalar prod-
uct appears on the Fock sphere to insure a unitary
representation of the SO(4, 2) group, or equivalently the
SO(2,1) subgroup. Since we have singled out the latter
by studying the radial problem, the symmetry group
SO(4) does not appear here, It should be mentioned that
the stereographic projection of the circle S can be
related to the radial pseudo-Coulomb problem through
a trausform with a Fourier type kernel. The connection
of this with the momentum space and the embedding in
the Fock sphere will be studied elsewhere.

XMy, 12, 5-1 72 (= 21p).
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APPENDIX

We shall relate here the representation theory of
SL(2, R) on the circle S! as presented in Sec. 2 to the
better known representation of the discrete series on
the unit disc as described by Bargmann!! for single-
valued UIR’s of SL(2, R), by Sally'® for the multivalued
UIR’s and Gel’fand!* for single-valued representations
on the complex upper half-plane.

Let fc 7;; then we can expand f together with all its
derivatives in a Fourier series with positive partial
waves as

f (@) = explike) o] @k exp(iNG). (Ala)
Moreover, for z=7exp(id) with » <1,
[ (¢)= exp(ike) 2 air” exp(iNg)
=0
= exp(ik¢) 2 ajz”, (Alb)
N=0
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and hence the series

g@)=27 az" (A2)
N=Q
defines an analytic function whose radius of convergence
is greater than 1. Thus for every f€ 7, we can associate
a function g analytic in a region R, containing the closed
unit disc ) ={z e ¢ : {z| <1} such that exp(- ikp)f(¢) is the
boundary value of g(z) as 1z —1, and conversely, for
every analytic function g in R,D>/)) we can construct the
uniformly converging series (Al), Following Barg-
mann, 1! we equip the space of analytic function on the
open disc with the inner product

(81,8205 = @k =117 [ [)y 7 drdg (1= 7')* gy (2)*gz ()
(a3)

and the norm |lgll,= (g, 8)i/% <. The 7 integral is
understood to be in the sense_gf limit in the mean. Now
if g1, 4, are analytic on all of //j, we can write a Cauchy
integral representation

g{z’)dz’

g(e) = o (A4)

N 2mi 12'1=1 z=-z2"

Substituting (A4) into (A3) and performing the » and ¢
integrals, we find

(g1,820= [ [add de’ Qe - ¢")f1(6)*/2(6") (A5)
with f;(¢) =exp(ik¢) lim,,, .1 g;(z) and Q(¢ - ¢') given
precisely by (2. 22). However, since the norms (A3)
and (2. 15) are equivalent on 7,, mean convergence in
one is the same as mean convergence in the other, and
so the space of functions analytic in/} with finite norm
(A3) is a realization of the Hilbert space #/;. The mem-
bers of //; on St are the boundary values almost every-
where of analytic functions in// with finite norm (A3).
Moreover, as demonstrated by Bargmann11 and Sally, 13
mean convergence in //; implies pointwise convergence
of analytic functions in /.

We can easily express the Lie algebra generators
(2. 8) and group representation (2. 34) on/) by replacing
exp(f¢) by z. Then the mapping (2. 31) is a mapping
from / %(0, ) to the //; realization on the disc. This
mapping was mentioned previously by Bargmann?® and
studied in detail by Sally, 3

The well-known conformal mapping of the unit disc
/M onto the upper half-plane C,={we C: Imw > 0} is the
analog of the mapping (2. 39). Explicitly, for z< C we
write

1-2z
1+z

i—w .
2= , w=i
+w

. (A6)

Then it is easy to see that |z] <1 implies Imwu > 0;
moreover, the boundary |zl =1 of // maps onto the real
line Imw =0 including the point at infinity. Thus (A6)
defines a homeomorphism of the closed unit disc/l_d‘ onto
the one-point compactification of the upper half-plane!’
C,={we C:Imw= 0}u {«}. Under this mapping the scalar
product (A3) becomes
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(Fofode = @k = Dr7t [ du(lme)™ 2, ) fy(er),  (ATa)
where
fi(w) = 2252 4 20) PR, (2 (). (A7b)

As a result f is analytic in C,((l) when g is analytic in
MM). Moreover, analyticity of ¢ </ and therefore of
feC, implies the condition at infinity

fa) ~  lwl™E

lwl +

(A8)

The realization of 7 on E,, is the space of all functions
analytic in C, satisfying the condition (A8). The realiza-
tion of #; on C, is the space of all functions analytic in
C, with finite norm || ||, = (f,/)i/? given from (ATa), and
#» is the completion of 7, with respect to this norm.
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The canonical realizations of the full Poincare” group in classical mechanics are studied by means of
a general formalism introduced in preceding papers. The resulting classification displays significant
analogies with the quantum one. The irreducible realizations, corresponding to positive, zero, and
imaginary mass particles with or without spin are discussed. Also the irreducible realizations of the
homogeneous Lorentz group are classified. Particular attention is given to the nonirreducible
realization describing a system of two free particles and to a discussion of the physical meaning of
the *“center-of-mass” and “internal” variables. It is seen that this formalism provides a most natural
framework for the introduction of a direct interaction between the particles according to the
well-known prescription given by Bakamjian and Thomas. Finally, some simple models of relativistic

“rigid” systems are discussed.

1. INTRODUCTION

A method developed in preceding pa.persi'3 for the
analysis, the classification and the construction of the
realizations of local Lie groups by means of classical
canonical transformations is applied in the present
paper to the full Poincaré group.

In Sec. 2 we first discuss in general the problem of
realizing the space and time reflections in a canonical
or anticanonical way in analogy with the unitary and
antiunitary way for the quantum representations; then
we construct all the possible schemes A for the proper
Poincaré group in the sense of Ref. 1.? Various aspects
of the results are parallel to the quantum ones: In
particular, the two canonical invariants can be chosen
to be strictly similar to the corresponding quantum
operators. The first invariant W is related to the little
group of the energy—momentum 4-vector and it refers
to the internal angular degrees of freedom of the dy-
namical system involved. The second invariant Il is a
function of the space—time translations generators and
it is related to the mass of the system or to its energy
evaluated in the center-of-mass frame. Two main types
of schemes A exist independently of the values of II, and
correspond to regular and singular realizations, re-
spectively. The singular type is related in any case to
trivial realizations of the little group. In the regular
type, one of the little group generators can always be
identified with the kelicity. When II is positive definite,
an alternative form can be given in which the generators
of the little group are independent of the values of the
energy—momentum. For I =0 two additional singular
types of Schemes A exist; a first one in which the in-
variant W coincides with the helicily and a second one
corresponding to the homogeneous Lorentz group,

Section 3 is devoted to the characterization of the ir-
reducible realizations.

A first class corresponds to IT = Mc? > 0. In this case
the invariant W is simply related to the magnitude S of
the intrinsic angular momentum 8 of the system (free
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particle); the realizations corresponding to W=0 belong
to the singular type and describe scalar particles; the
realizations corresponding to W> 0 are regular and de-
scribe particles with spin. In the case W=0, the com-
ponents g, of the canonical “center-of-mass” transform
correctly as positions coordinates of the particle under
any operation of the Poincaré group. In the case W> 0,
q transforms as a position vector under space rotations
and translations but not under special Lorentz trans-
formations, In this case a new vector x can be con-
structed in terms of the canonical generators which has
all the correct transformation properties and appears to
be the only space vector entitled to be interpreted as the
position vector of the free particle with spin; the com-
ponents of this vector, however, cannot be assumed as
canonical variables since their mutual Poisson brackets
fail to vanish. Many of these last results are already
known or strictly similar to corresponding quantum
ones; yet they have been emphasized in our context in
view of their relevance to more general questions dis-
cussed in the sequel of the investigation.

In a second class corresponding to IT = - a%c? <0 we
find again a regular and a singular type of irreducible
realizations, corresponding to four and three degrees
of freedom, respectively. These canonical realizations,
which are new to the authors knowledge, should de-
scribe free classical “tachyons.” A canonical and co-
variant position vector can be defined within this class
only in the singular realizations (free scalar tachyons).

Finally, in the third class I1 =0, we find four sub-
classes of irreducible realizations, one of the regular
type and three of the singular type. The regular one is
the classical analog of the so-called infinite-spin uni-
tary representations of zero mass studied by Wigner. A
first subclass of the singular type describes zero-mass
particles with a given kelicity; a second one, which may
also be viewed as a particular case of the first, de-
scribes zero-mass scalar particles; finally, the third
one corresponds to an identically vanishing energy—
momentum 4-vector and provides the irreducible
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canonical realizations of the homogeneous Lorentz
group. Again a canonical and covariant position vector
can be defined only in the scalar particle case.

Section 3 ends with a discussion of the realizations of
the full Poincaré group within the phase spaces of the
irreducible realizations already classified for the prop-
er Poincaré group. The full group turns out to be
realizable:

(a) in all of the irreducible realizations of the class
11 =M2c®> 0, in the regular and in the singular scalar
irreducible realizations of the class Il =0—and in all
these cases the space reflection and the time reflec-
tion can be realized in a canonical and anticanonical
way, respectively;

(b) in the regular irreducible realizations of the
class I =— A%? <0 with W> 0, in the scalar realiza-
tions of this same class and in the irreducible reali-
zations of the homogeneous Lorentz group when the
pseudoscalar invariant J- K vanishes; in all of these
cases both space and time reflections can be realized
canonically or anticanonically.

In all of the other cases there is always some reflec-
tion transformation which cannot be realized either in a
canonical or an anticanonical way.

In Sec. 4 we consider the nonirreducible realization
corresponding to a system of two free particles without
spin, characterized by the canonical coordinates
4y, Py, 92, P3- This realization is then reduced to the
typical form,! after the introduction of “center-of-mass”
and “internal” coordinates (Q, P and p, m, respectively),
linked to the original ones through a global canonical
transformation. The physical meaning of these new
variables is discussed with particular emphasis on the
“internal” space vector p which appears to be velated in
a significant way to the velative position of the particles
in the centerv-of-mass system. On the basis of these re-
sults a quite natural way for introducing an interaction
between the particles consists in maintaining the formal
structure of the canonical generators in terms of the
basic variables Q, P, p, m unaltered apart from the addi-
tion of an interaction “potential” U(p, m) to the free
particle expression of the center-of-mass energy cVil.
This procedure coincides with the prescriptions given
by Bakamjian and Thomas® and Foldy. ® A crucial con-
sequence of the introduction of the interaction is that the
original canonical variables q;(Q, P, p, ), @:(Q, P,p, m
no longer transform as covariant coordinates under
special Lorentz transformations whatever the interac-
tion potential is, This is a way of appearance of the
well-known zero-interaction theorem. ” Accordingly,
the expressions qy and q, can be interpreted as position
vectors of the particles only in the asymptotic region
{qqy — gy} — « provided that the potential U(p, 7) vanishes
for |p| — 0 in a suitable way. The whole physical inter-
pretation of the theory rests on the construction of
dynamical variables representing position vectors of
the particles x,(Q, P, p, 7) and x,(Q, P, p, ) which share
all the desired transformation properties in the case
Ulp, 7 Z0 thus allowing for a complete space—time de-
scription of two interacting particles within the Hamil-
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tonian relativistic framework. This general problem is
considered in detail in a separate paper.

In Sec. 5 a system of two points “rigidly” connected
(relativistic linear rotator) is first discussed as a
limiting case of a system of two particles interacting
through a potential. In the case of equal rest-masses a
moment of inertia can be defined and the typical form
for this system closely resembles the corresponding
form for the nonrelativistic linear rotator. The equa-
tions of motion of the system can be explicitly solved
and it is interesting to note that the frequency of the in-
ternal rotation depends on the linear velocity of the
center-of-mass according to the well-known relativistic
formula for the retardation of moving clocks. Actually
this system seems to be the most simple conceivable
model of a relativistic clock. By means of similar
formal modifications of the nonrelativistic formulas for
a spherical, symmetrical and asymmetrical top, cor-
responding relativistic systems with six degrees of free-
dom are obtained. Presumably, the equations deduced
by following this formal procedure describe actual
relativistic “rigid” bodies whose internal mass distribu-
tion satisfies particular symmetry conditions,

2. GENERALITIES AND SCHEMES “A”

According to the usual parametrization (we adopt the
passive point of view throughout), the operators of the
infinitesimal transformations of the proper Poincaré
group are

0
g==x N

space rotations

special Lorentz K=- (lxﬁw‘—a—)

transformations ct ot Tax)’
. 0

space translations 7 =- =

2
7—0:—‘(—

time translations .
ot

Their commutation relations are

[gi’gj] =€iieJws
[ﬂ iy K31 = €0 Ker
[ﬂi, Til=€sl e
[Qi’ 70] = 07

(5, k=%,v,2).

[Ki,Kil=- % eijkglu
[Ki’ 71] = '(}_2 5;‘;'70,

[Kia 70]:7:',
[Ti, 71‘] :[Ti’ 70]:0

Let us denote by J, K, T, and — H, respectively, the
generators of the corresponding transformations in a
canonical realization. According to Ref. 1 these genera-
tors satisfy the Poisson bracket relations

1
{Ji)Ji}ZGiijk+dJiJj) {Ki’Kj}:'ﬁfiijm

1
{Jiin}ZEiijk+dJin’ (K, Tjh=- Py by,
2.2)
i Tit =€ T +dy 7y K, Hy==T; - %éihdeth

M. Pauri and G.M. Prosperi 1504



{Jin}ZO’ {Tiy TJ'}:{TE,H}:O
(iyjak :x’y’z)7

where the Jacobi identity has already been enforced.
By means of the substitutions!~%3

1
Ji =i+ 2 €l g, gy,

Ty~ Ti+26mds,r, (2.3)
K;—~K; +§eihdeth,
Eqgs. (2.2) become
1
[T, It =€l 1K K b=- ?Eiijk’
1
{Jiij}:eiijIn {Ki’ Tj}:" po 0;;H, . 4)
2.4

{Ji, Tj}:eijka’ {Ki» Hf=-T;,
{Ji, H}:O, {Tia Tj}:{Ti’H}‘_‘O
(i’j7 k :x’y’ Z)'

Thus no constant d,, remains, a result which is well-
known for the case of unitary representations of the
group,

The full Poincaré group contains the discrete trans-
formations of space and time reflections besides the
continuous transformations of the proper group. The
corresponding operators are defined by

space reflection ¢ F(x,?)=F(-x,1),

time reflection ¢ ,F(x,t) = F(x, - 1),

and the commutation relations (2. 1) must be completed
with

ﬂsﬂt =4 g _QsT:— Tgs,

gsK:_Kgy 9570:7—(1937 )

99-99,  9.T=T9,, Iodi=9tds @.5)
9K==KGss 9:To==Tod¢

Let us consider first the space reflection. We assume
that this transformation is canonically realized,

q'=q'(q,p), p'=p"{q,p),

and denote by I the operator which acts correspondingly
on functions of the phase space

Isf(qsp) :f(q’yp,)- (2. 6)
Then, the first Eq. (2.5) implies
Is{Jy"'}:{J?“‘}Is' 2.7

On the other hand, from the definition of a canonical
transformation

U ghe =1, gl (2. 8)
we have

181, e} =A1.f, L4} 2.9)
and Eq. (2.7) is equivalent to

U, I} =13, L7} (2.10)

Being f an arbitrary function of the phase space, the
last relation implies that I J and J differ by a constant
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vector at most. Finally, since 2=1 must hold, it
follows

1J=1J.

In a similar way from the remaining Egs. (2.5), we
obtain

IK=-K, IT=-T, IH=H.

(2.11)

(2.12)

It is apparent that the fundamental Poisson bracket rela-
tions (2. 4) are not modified by the transformations
(2.11) and (2.12).

Let us consider now the time inversion transforma-
tion. Denoting by I, the operator which realizes it on
the functions of phase space in a canonical way, the
same procedure gives

1J=3, LK--X, I,T=T, LH=~H. (2.13)

It will be noticed that this transformation cannot be de-
fined within the canonical realizations of the Poincaré
group which are most significant from a physical point
of view: Actually, the generator H should be interpreted
as the energy in these cases, and therefore it is forced
to be a positive definite quantity—a fact which is not
compatible with the last Eq. (2.13). The way out, how-
ever, is that we can also realize time reflection by
means of an anticanonical transformation, i.e., a
phase space mapping ¢’ =¢’(q,p), p'=p'(q, p) such that

{f’g}qp:_{fyg}q'p' (2. 14)

for arbitrary functions f and g. 3 [The most general
phase space mapping g’ =¢q’(q, p), P’ =p’(q, p) such that

q'=q'(q,p), p'=p"(q,p), (2.14")
which leave the Hamiltonian character of the equations
of motion

oH . oH

=ap, PiTT %, (2.14")
1 k3

q;
invariant independently of the particular form of H,
coincide with the transformations for which

{f’ g}qp = A{f7 g}a’p’

holds true, with X a real constant. The canonical and
the anticanonical transformations belong to this class
for x=1 and A=-1, respectively. On the other hand,

any transformation satisfying Eq. (2.14") can be re-

duced to a canonical or an anticanonical one by means
of the trivial scale redefinition

q'—=q"=VIxlq’, p'—p"=VIXIp'. (2.14")

Note the analogy with the unitary and antiunitary rep-
resentations allowed for by the Wigner theorem in quan-
tum mechanics. ] Denoting by I* the phase space opera-
tor which realizes the anticanonical time reflection,

we have now

(2.14™)

IXf,gh == {12, 1 g} (2.15)
instead of Eq. (2.9). Consequently, it follows
I¥J=-1J, I}K=K, I*T=-T, I¥H-=H, (2.16)

It is evident that these relations differ from (2, 13) by
an overall change of sign and that the transformation
I* changes in sign the fundamental Poisson brackets
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(2.4). In a similar way, we may consider the anticanoni-
cal realization of space reflection. We summarize here
for later use all the possible canonical or anticanonical
realizations of the improper transformations:

Transformation | Canonical Anticanonical
realization realization
space J—J, T—--T|J—-J, T-—T
reflection K—-K, H—~H K—K, H—~H
time J—J, T—~T Jd—-J, T—-T
reflection K—-K, H—-H|K—K, H—H
space—time J—J, T--T|J—-J, T-T
reflection K—K, H—~-H|K—~-K, H—H
2.17)

We turn now to the construction of the scheme A (Ref.
1) for the proper group. Recalling the Galilean case,
we put

‘Bi:Tx’ $2:Ty1 ‘BB:T

Then in order to construct the canonically conjugate
variables£;, we consider the expressions

(2.18)

2
4 :
R;E—‘;I‘K{, (Z :x,y,z). (2- 19)
One has
{Ri"Bj}zbij’ (i:x;yrz;j=1’293); (2~20)
however,
2
c
{Ri, R} =- F einlde = RAT),] (2.21)
(e;;» Ricci pseudotensor normalized with €95 =1).
Therefore, we write
D’iERi+Ai’ (1:172:3) (2-22)

and look for three independent functions A; which have
zero Poisson brackets with $= (P, B,,P,) and satisfy
the equations

{Q,Q,}=0, G,i=1,2,3). (2.23)
The system
{®;, 8}=0, (=1,2,3) 2. 24)

has seven independent solutions., Besides T and H, a
possible choice for the other ones is

2=J-RAT. (2. 25)
Therefore, putting

Ay =Ay(T, H, Q) (2. 26)
in Eq. (2.22) and taking into account the Poisson
bracket relations

{Ri, T;}=04y, {Ry,H}= %2 T

o2
{R;, RJ}_— €1368%
{Q,R }_—— Q-To;; - ,T)), (2.2

2
c
{Qi’ Qj} = eijk(nk e Q TTk)>’
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{Q{’H}:O’ (i,j,k:x,y,z),
Eq. (2.23) becomes
Wy _any oy N
3T, 9T, " H \oH © H j
aN; BN P A
HQ(Q T)( an)‘m(ﬂ anT
aAg aA aA,
ALY} > 39, 99, ”‘( )T‘>

2
¢ ..
= cint  @d,k=x,y,2). (2.28)

Finally, if we require that the expressionsQ; (=1, 2, 3)
transform as vector components under space rotations

{0 =€,,00Q, G=x,v,2;j,k=1,2,3), (2.29)
the functions A; must be of the form
A;=a[T,H,Q,Q -T)T;+ 8T, H,Q, (R T
+y[T,H,Q, (& T)(TAQ),,
T=|T|, a=|Q|. (2.30)

Then it can be easily checked that a solution of Eq.

(2. 28) is given by Eq. (2. 30) with
o2
=8=0 == . 2.31
R A v 17yl S
Consequently, we obtain
R &
-—<K- TAR
Q H VE?E = c2T%(H + VH? = c2T%) N
2 2
c c
= K T
VIE—ctl? VIR = CTUHVIE = c2T?) n
K- T)
2.32
T HVR - ATHH AV - & TY) (2.32)
Using Egs. (2.11), (2.12), (2.16) one can also check

that £ behaves as a position vector under the canonical
space reflection and the anticanonical time reflection:
precisely it remains unchanged under the latter and
changes in sign under the former transformation. Con-
versely, assuming this behavior under the improper
transformations, one is forced to choose a=8=0 in Eq.
(2. 30) because a pseudoscalar under anticanonical time
reflection cannot be constructed out of T, H, , Q- T,
this makes the solution for Dumque In order to pro-
ceed in constructing the scheme A we must look now for
four functions having zero Poisson bracket with P and
Q. Ltis easy to see that, in analogy with the Galilean
case, three independent functions satisfying this condi-
tion are

- (QAS),- L,

c? c*(J-T)
o ®N\D: - T =)
(i=%,9,2) (2.33)
Moreover, since Egs. (2.27), (2.32) give
ol
{Q{’H}:_I?Ti) (2. 34)
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a possible choice for the remaining one is

1

HE-C—z(HZ—czTZ). (2.35)
Finally, one readily checks that
{8:,11}=0, {S;,S;}=€:;S, G5, k=%,9,2), (2. 36)

which mean that the S;’s generate a canonical realiza-
tion of the rotation group SO(3). In conclusion, we can
write (see Refs. 2, 3)

B,=5, I=5 =Vl

S
Q4 =arctan§j
(s=18)), 2. 37)
and the whole scheme A results
=T B,=S, =8 F,=+T
— 'K ¢*SAT Sy
DV_—I';—.FH(C—\/TI-;?) 04—arctgn8x (A)

with S given by Eq. (2. 33).

At this point we observe that the expressions-f) , S and
VIl in A; become complex if IT is a negative quantity; on
the other hand, they are singular if Il =0. This means
that the scheme A, is significant only for canonical
realizations in which IT is positive definite. If we want
to obtain the scheme A in a form of general validity we
are forced to follow a different approach and the new
canonical variables Q4, Q,, Qj conjugate to B, B,, B,
cannot be chosen any more as components of a vector
under space rotations and space and time reflections.
We look now for this general form of the scheme A,

Leaving Egs. (2.18) unchanged, we adopt a different
choice for the independent solutions of the system
(2. 24). Precisely, we consider T, H, and the

expressions
9T 3T
r— T T s
H
Wus—cﬂ-u, (2.38)
w,= i v,
c

where u and v are unit vectors such that (T/T,u,v) de-
fine an orthogonal right-handed triad; they can be writ-
ten in turn by means of a fixed unit vector n as

a--TAn T,
" ITAnl’ T )

The basic advantage of the new choice lies in that
Wr, W,, W, satisfy simple Poisson bracket relations for
any value of IT; actually,

{WT: Wu} = Wv:

(2.39)

(2.40)

{we, wi=-w,
{Ww Wv}:H W,
while the expression
W=12 + QAT =W+ Wi+ W2 (2. 41)
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has zero Poisson brackets with all of the W;’s (and with
T, of course),

{w,wi}=0, (@=T,u,v). 2. 42)
Hence we can put

PB,=Wy, Q,=arctan(W,/w,). (2.43)
Then, writing

S=R+A(T,H, Wy, W,, W,;n), (2. 44)
we look for a A such that the conditions

{Q,0.)=0, {Q,B,}=0, (2. 45)
and

{Q,Q,}t=0, (=1,2,3) (2. 46)

are satisfied.

Inserting Eq. (2. 44) into Egs. (2.45), we obtain the
system

Wv% - Wu—g% = ;%, (W + W,v),
%—nﬁﬂu—“:l@ (Wu-g%‘+ W%) (2. 47)
= }—%-(%'—_T_)i- u- H% —I/I_ﬂ%%/z: (W~ W,u),
the general solution of which is
A:N—W_T_——:(n___m WTu+-}%,Wuv— _15—7: Wa

T
+g (T, W)? +g,(T, Wu+g,(T, W)v, (2.48)
where gr,g,, 2, are arbitrary functions of their argu-
ments. It is easy to check that Eq. (2. 46) is satisfied
with the choice

£1=8.,=8,=0. (2.49)
Finally, via Egs. (2.38), (2.39), (2.25), we have
= QT T-n Q-T
Q=- 'EK— T2 + T(T2+ (T~n)2) T T/\n
o 1 T.n
= -—I;K+~7—_‘(Wvu— Wuv) + mWTTAB.
(2.50)

We are left with the construction of the two invariants,
Now, while the expression I1 = H*/¢c? - T? is still a good
choice, it is clear that the second invariant must be
essentially W. Actually, W is the only expression which
has zero Poisson brackets with T, H and W, W,, W,,
separately, In order to verify that W commutes withﬁ,
it is sufficient to check that it commutes with R, in
force of Eq. (2.44). That this is true it can be seen
directly from

(o
{Rh WT} = _1:171 (Wuui + vai)a

c T'n

{R,, Wu}:—HHTWgui—?—_m___(’_r__WWuui, (2.51)
c T-n
W e T — oy
{Rn v} H HT WTU, + T\/T‘Z_—-_(_'I_'- 1’1)2 lﬂl
M. Pauri and G.M. Prosperi 1507



Note that from the fact that W is an invariant it follows
{Q, w}=o, (2. 52)

not only for ¢ =7 but also 7 =«,v. In conclusion, the
scheme A results

B=T P=Wr 3‘1:W Iy =11
> ¢t W,
== -1—{—K+—7—,(Wvu— W) Q4zarctanW:
T-'n
+ 72 (T n)? WTT/\D.
(Ap)

where W=TW%+ W2+ W2 and the W,’s are defined by
Egs. (2.38).

It is apparent that the scheme A, remains significant
for any real value of the invariant II. The price we had
to pay for this result, however, is the occurrence of
the fixed vector n with the consequence that the trans-
formation properties of the expressions appearing in
A,, under space rotations, are more complicated than
the corresponding ones for the expressions of A;; in
particular, Cis no longer a rotational vector, as it was
expected,

It is also clear from the structure of the scheme A,
that the expressions Wp, W, W,, just as S,, S,, S, in Ay,
are simply related to the canonical generators of the
little group of the 4-vector (H/c,T). In order to display
this relation explicitly we have to distinguish three
cases:

(@) II=M’c* definite positive,
(b) T =- a%? definite negative,
(¢) mM=0.

(a) Putting

S,=(1/Mc)W,, S,=Q/Mc)W,, Sp=Wy, (2.53)
from Eqs. (2.40), (2.41) it follows

{4, S;t=€14Se, (4, k=T, u,v) (2. 54)
and

St= 82+ St 4 Sh= W/ M2, (2. 55)

1. e., a canonical realization of the Lie algebra of the
rotation group SO(3) and the corresponding invariant.

(b) Putting

Zy=Wy, Z;=(1/8c)W,, Zy=(1/Ac)W,, (2. 56)
from Egs. (2.40), (2.41) it follows

{20, 2}=2,, {2, 25=- 2, {2,,2:}=-2,, (2.57)
and

z=2}- 2% - 2t =— W/A’c?, (2.58)

i. e., a realization of the Lie algebra of the two-dimen-
sional Lorentz group SO(2,1) and its invariant.

(c) Equations (2, 40), (2,41) directly give

{vVT7 Wu}: Ww {WT’ Wv} == Ww {Wu’ Wv}: 0; (Z- 59)
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and

W= Wi+ W, (2. 60)

i. e., a canonical realization of the Euclidean group of
the plane E(2) and the corresponding invariant, ®

As regards case (a), we find that the expressions
Sw S, Sp satisfy the same Poisson bracket relations
(2. 54) as the expressions S, S,, S, in scheme A; (2. 36).
Actually, the two sets are related by

S,=8-u, S,=S-v, S;=S-T/T. (2. 61)

Therefore, for II positive definite, the little group gen-
erators in the two different forms of the scheme A can
be viewed as the components of the same vector S re-
ferred to two different bases. The fact that S can be
referred to a T-independent basis and the consequent
vectorial character of Qare clearly related to the cir-
cumstance that, in the case Il =M%c?> 0, a Lorentz
frame exists in which the 4-vector (H/c, T) takes the
form (Mc, 0) in which any reference to the direction of
T has disappeared.

We have so far exhausted the discussion of the
schemes A associated with the regular realizations.
The proper Poincaré group admits also nontrivial singu-
lar realizations corresponding to invariant manifolds of
lower order of the ivveducible kernel (see Refs. 1, 3) on
which some of the expressions of the schemes A; or Ay
become singular.

In the cases I =M%c?> 0 and Il =— A%? <0, the only
submanifolds of this kind correspond to

W,=W,=W,=0, (2.62)
i.e.,

Q=0, (2.63)
or, more specifically, to

S=0 (2.64)
for I1> 0 and to

Zy=2Z1=2Z,=0 (2. 65)

for II1 <0. The reduced scheme A for these submanifolds
can be written

T-T =1

o ()

8--ZK

This scheme can be considered as the reduction of the
schemes A; or A,, independently. Note that the ex-
pression Qin A, transforms as a vector under space
rotations, independently of the sign of II.

In the case [I=0 we have'®

H=cT, W=W.+W=|QAT|% (2. 66)
There are now three different singular invariant sub-
manifolds and, correspondingly, three different class-
es of singular realizations. A first singular invariant

submanifold is defined by
W=0 (RAT=0), (2.67)

i.e.,
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W,=W,=0, (-u=Q-v=0). (2. 68)
Then the only component of £ which survives,
Q-T
r=Wr=—"7—, (2. 69)

becomes an invariant of the corresponding class of
realizations and the reduced scheme A can be written

$-T =T
— (A4)

c T-n
Q=~ 7,K+——————T(T.Z_ (T-n)2)FTA n

A special case of these singular realizations is obtained
if
=0,

Wu:Wv:W'I‘:O’ (2'73)

i.e., if also I'=0. The reduced scheme A becomes

B=T
— [
Q——?K

(A5)

Notice the strict similarity between this scheme and A;.
In particular, £ transforms again as a vector under
space rotations.

Finally, a third singular invariant submanifold corre-
sponds to

T=0, H=0. 2.71)
In this case we are left with the canonical realizations
of the homogeneous Lorentz group SO(3,1). The scheme
A for this group is derived in the Appendix A by follow-
ing the standard method. It can be written in the form

$2: tJ| = 3x""_‘-y'*"—jz

JINK).
(J-K)J,- 12K,

Bi=J;

J.
Q, :arctanf Q,=arctan

X

3,=-K 3,=7-K

The calculations are quite parallel to those performed
in the case m =0, T =0 for the Galilei group [see Ref.
3, Egs. (44")). No nontrivial singulay realization exist
in this case.

3. IRREDUCIBLE REALIZATIONS
A. Positive mass

The most interesting realizations from a physical
point of view are those corresponding to Il = M%c?> 0,
Among the irreducible realizations of this class, let us
consider first the singular realizations for which Eq.
(2. 64) holds. Putting

—
$=p, I :mzczs

(3.1)
Q=q
in the scheme Aj;, we obtain by inversion
H
J—q/\P, K"_cgqy (3.2)

T=p, H=xc(mct+p?)!/2=cp,.

If we choose the positive sign for H, the above expres-
sions describe a free spinless particle characterized
by a position q and a linear momentum p. To realize
this we should specify the transformation properties to
be required for admissible relativistic position and mo-
mentum variables x and p. First of all, we shall re-
quire the usual transformation laws under space trans-
lations and rotations

(3.3)
(3.4)

{Ji,xj}:fijkxm {Tiaxj}:—éij’
{Jiapj}zeiikpm {Tiypj}:oy (i:jyk:x;y,z)-

Then we can argue in the following way for the transfor-
mation properties under special Lorentz transforma-
tions. An infinitesimal special Lorentz transformation
for the space—time coordinates of a moving point can
be written

x'(t') =x(t) - ovt,

1 (3.9)
V=t~ =ov-x(8),
c
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Ee neglecting infinitesimals of higher order,

A

ov-x(t
v x(t) (3.6)

x/(#) =x(£) +x(t) - ovi.
Now, putting ¢=0 in Eq. (3. 6) and writing x={x, H}, we
compare the resulting expression with the infinitesimal
transformation as written in terms of the canonical

generators

x' =x+2 6u,{K,, x}. (3.7
14
The result is
1
{Khxj}:?xi{xj’H}' (38)

In a similar way, the requirement that expressions of
the form [u,(f), u(t)] transform like a 4-vector gives

1 1
{K ut= ;ixi{un H} - 2 Bittos
1 1 {3.9)
{Ki,uo}: ;z'xi{uo’ H}_ Euh

It will be noticed the significant difference between the
usual transformation laws of the 4-vectors and Egs.
(3.9), or (3.8) for the space part of the space—time co-
rodinate vector, which are typical of the “instant form”
of dynamical description and involve the dynamics of the
system explicitly. !* Only in the case that #,(f), u(t) are
constants of the motion do Egs. (3. 9) coincide with the
usual ones. It is easy to check now that the variables q
and p of the considered realization satisfy Egs. (3. 3),
(3.8), and (3.4), (3.9), respectively, thus justifying the
interpretation given above, Let us note finally that under
an infinitesimal time translation we obtain

q’=q+6r{q,H}=q+éf%B
0 (3.10)
p'=p+37ip, H}=p,
as it should be expected.

We consider then the regular irreducible realizations;
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putting

gzp, Q,=py, S=s, VI=mc,
- (3.11)
D:q’ ’94:)(
in the scheme A, we obtain by inversion
~ _H s/\p
T-afp+8, K== Ga-o g
(3.12)
T=p, H=cpy=+cVimlci+pe,
with
S, =VsT=pf cosy,
S, =VsZ = pI siny, (3.13)

Sz:[)x s

(A single point of the phase space corresponds to the
value — s or +s of p, for given q,p, independently of the
value of y.) What happens now is that while g continues
to satisfy Egqs. (3.3) and (3. 10), it no longer satisfies
Eq. (3.8). Nevertheless, an expression satisfying also
Eq. (3.8), can still be constructed in the form!!=13

X= +_S/\p
=P mnct+H) -~

(0=sy<2m -s<p,<+s),

(3.14)

Actually, this space vector turns out to be the most
general solution of the conditions (3. 3), (3.8), (3.10)
within this class of irreducible realizations if the time-
reflection condition (I¥x=x) is imposed (see Sec. 3f) and
therefore it is the only entitled to be interpreted as the
position variable of a particle. Note, however, that

{xi,xj}:;%q— Eijk[sk m(SITITI-)p"]' (3.15)
so that the components of the vector x cannot be as-
sumed as canonical variables unless the spin is zero.
Furthermore, in the rest frame of the system (p=0) we
have x=q. In the following we shall refer to x and q

as the covariant position vector and the canonical posi-
tion vector, respectively, Summarizing, the realization
defined by Eqgs. (3.12), (3.13) describes a free particle
with spin 8, position X and linear momentum p.

Finally, for a better comparison with the other class-
es of regular irreducible realizations, it is profitable
to give also the canonically equivalent form of the gen-
erators which is obtained by the inversion of the scheme
A, rather than A,. Putting
=P, QJ:[)T’ tht‘, H:7772C2,

7 Q-7 (3.186)

Ol al

in the scheme A,, we have
— [)WT
J=a N PNy
P+ e P
H (p-mWr

H — 1
a4 + (Wy-wu) + = 2pm

c cp
T=p, H=+cVmilip?,
with
W, =vie — mic?picosT,

K=~ (3.17)
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W, =V — m2c?plsinT, (3.18)
Wr=p, (0<7<2m, s3]
me me
__pAn . p
u= , v==Au, (3.19)
b2~ (p - n)? p
and where
w=mbe’st, (3.20)

Note that ¢ does not transform as a vector under space
rotations, in contrast with q. Note, moreover, that, in
order the realization is defined unambiguously, a single
point of the phase space must correspond again to the
value vio/mc or — vw/me of p., for given T and p, inde-
pendently of the value of 7.

B. Imaginary mass

Two types of irreducible realizations exist also for
Il =— A%? <0, the singular realizations for which the
little group variables Z;, Z;, Z, are identically zero
[see Eq. (2.65)], and the regular realizations. The
singulav realizations correspond to the spin zero case
for II > 0 and should describe free scalar fachyons.
These realizations can be obtained again by inversion
of the scheme A, putting

_‘ﬁ:p9 8‘:]‘[:-52(;2’
5:q (3.21)
It follows
J=q/p, K=-7q,
(3.22)
T=p, H=xcVpZ- &cl.

The appearance of the double sign in front of the expres-
sion of H is a consequence of the fact that H/|H| is no
longer an invariant for 11 <0, The generators can be ex-
pressed unambiguously introducing a four-dimensional
polar representation of the energy—momentum (H#/c, T)
as follows:

g =8c sinhp,,

Py =8¢ coshp, sinp,cosp,,
. 3.23
ps = bc coshp, sinp ,sinp,, ( )

b3 =0c coshp, cosp,,

with — o <p, <+, 0sp, =7,
responding “configurational” conjugate variables are

0 < p, <2m. Then the cor-
14

£=~ —Zg; = - b¢c[q, sinhp, sinp ,cosp,

+¢q sinhp, sinp , sinp, + ¢4 sinhp, cosp,|,

o=~ 2 __ b¢c[qq coshp, cosp,cosp,

TR (3. 24)

+qy coshp, cosp,sinp, — q; coshp, sinp,},

b=~ -2% == 8¢[~ ¢, coshp, sinp,sinp,
17
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+qy coshp, sinp cosp,|

[ =p(by, 0 00} " )

The irreducible realizations of the regular type are
defined by the inversion of the scheme A, with the same
positions as in Eg. (3.186) except for I =m?c? which is
replaced by

Il =- &8%2 (3.25)
It follows'®
= W .
J‘ﬂ/\p"'pz_(p,n)z(p (p n)n)7
_ H 1 H (p-n)Wr
K=- peii p(WV wu) + czpmu (3.26)
T=p, H=1cVpl-"5%?,
with
Wr=ps,
W, =vw + 8%cZpLcosT, 3.27)

W, =Vw + 82c2pI sinT,

and u, v are given by Egs. (3.19). Note that using the
natural invariant of the little group [Eq. (2.58)], we
have

6%c?(Z% - Z3 - Z3). (3.28)

The range of 7in Eq. (3.27) is obviously 0< 7< 27 as
in Eq. (3.18). On the other hand, the range of p, and
correspondingly the topological structure of the phase
space are not unique: Three different subclasses cor-
respond to the values §20, i.e., to (Z,, Z, Z,) being a
timelike, spacelike or a null vector in the three-dimen-
sional Min.kowsky space In the case £>0 (w <0), the
open interval (-~ V¢, +v ) must be excluded and the
allowed range of p, is confined to [VZ, + ), (or (=,

— VT ]) since the quantity Z,/1Z,! is an additional in-
variant under the proper transformations, (Again, for
given & and p, the value p, =V has to be intended as
specifying a single point of the phase space, indepen-
dently of the value of 7). In the case £=0 (w=0), three
invariant manifolds exist under the proper transforma-
tions corresponding to Z;> 0, Z,=0, Z, <0, Obviously
Zy=0 implies now Z; =Z, =0 with the consequence that

w=-6clt=-

Q and p transform according to the singular realizations.

Apart from this singular manifold, already considered,
the range of p, must be restricted to (0, + =), [or (- =,
0)]. In the case £ <0 (w>0), no additional invariant
occurs and the range of p, covers the entire real axis,
Finally, we can dispose of the double valuedness of the
generator H by introducing the variables (3. 23), (3.24).

C. Zero mass

For I1=0 and T,¥-0 we have three subclasses of ir-
reducible realizations, a regular subclass correspond-
ing to w+# 0, and two singular subclasses corresponding
tow=0, T+0and w=0, I'=0, respectively.

The singular realization corresponding to I'=0 is ob-
tained by inverting the scheme Aj in the usual way:

J=q/\p, K=~ (p/c)q,

Tp, (3. 29)

H=cp.
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The singular realizations corresponding to I'+ 0 are ob-
tained from the scheme A, with the position I'=y (y
= arbitrary real constant)

pz—_mz-Tp(P-(p'n)n)

8ol

J=g/N\p+

pAn, (3.30)

T=p, H=cp.
Finally, the regular realizations are obtained putting

i’:p, $4=p'n 315W=w, 32EH=0,

S.o 3.31

Q=9 , O4=T, ( )
in the scheme A,. By inversion it follows

_ Wip
J—-QApi—pz_(p'n)z(p (p.n)n)’
p— 1 (p-mwr
K———q +—— Wy=Wu)+~ ——————1u 3.32
( e &%

T=p, H=cp,
where now

Wszn

W,,:\/ECOST, (3. 33)

Wuzw/ﬁsin‘r, (0sT1<2m, —oo<p7<+ao),

and u, v are given again by Egs. (3.19). Note that W is
directly the natural invariant of the little group and
within these irreducible realizations it must be a posi-
tive number. The realizations (3. 32) correspond to
faithful realizations of the Euclidean group E(2) [see
Eqgs. (3.33)] while the realizations (3. 29) and (3. 30) cor-
respond to unfaithful realizations of the same group.

D. Zero energy-momentum: H = 0, T = O (homogeneous
Lorentz group)

Putting
Bi=bar P2=ps, I=§120, I,-4,20,
Q-a, O,-5 (3.34)
in the scheme A; and inverting it, we obtain
J,=Vpi— L cosa,
= Vpl~ p% sina,
Je=Day
K,='§%[jzmcosa+w (3.35)

X (pocOSacosf~ pysina sinf)]

K,= 3 Py =P sina + BRBE =70 =73
B8

X (pa sina cosB+pgcosa sinf)]

K,= []zPa- Vph = PAVPE( PR~ j1) — 7% cosBl.

p?
The global structure of these irreducible realizations is
quite different according to whether j,% 0 and j, =0 or
j2#0. However, we will not pursue further the discus-
sion on this subject,
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E. Limiting relations among the different classes of
irreducible realizations

As we have seen, in the case Il =m?c?> 0 it is always
possible to construct a covariant position vector, i.e.,
an expression X satisfying Eqs. (3.3), (3.8), (3.10).
This vector coincides with q for S=0 and it given by
Eq. (3.14) for S=s>0. On the contrary, if 1 =0 or
m=-8%< 0, a covariant position vector exists only in
the “scalar” case where the little group is trivially
realized (W,=W,= W,=0) and then coincides with the
canonical vector q. In the “nonscalar” case (W+0) the
canonical variables (q,9,9;) themselves do not trans-
form as vector components under space rotations. A
quantity which closely resembles a position vector and
does exist in any case is!!1?

R=- (c!/H)K. (3.36)

This vector satisfies Eqs. (3.3) and (3. 10), but not,
however, Eq. (3. 8); i.e., it does not correspond to an
invariantly defined world line. Nevertheless, it is con-
venient to reexpress the canonical generators for all the
classes of irreducible realizations by replacing R for

q (9) as independent variables. Then we have in general

J=RAp+8Q, Kz—%R,
¢ (3.37)
T-p, H-+cVTEF,

where the double sign refers to the case Il =— 8%t <0
only. Once this form is adopted, apart from the value of
II, the various realizations differ essentially for the ex-
pression of £, In the regular realizations § assumes the
common expression

p
; +

valid for any value 11 Z 0. In the singular case Il =0,
w=0, T'+0 [see Egs. (3.30)] we have simply

Q=y(p/p).

Finally, in the three “scalar” singular cases (II Z Q) we
have

=0, R=q.

£ - Iip, (ucosT+vsinT),

7 (3.38)

Q-p,

(3.39)

(3. 40)

The nontrivial Poisson bracket relations among the in-
dependent variables of the unified form (3.37) are

R
{R,, Rj}:" ﬁeiﬂzgk: {Ri;pj}: d;; (3.41)
[see Egs. (2.27)] in all cases, and in addition
Ry, 7= —E2e—u,
' pVPE= (p- n)*
L (#; sinT—v; cosT) (3.42)

L & S
PH Jw =TipZ
R, pat= Z)El—i Vo = 11p2  (u;cosT+v;sinT)

in the regular cases.

We want now to discuss the way the various irreduci-
ble realizations for zero mass can be recovered by
means of a suitable limiting process from both the posi-
tive and the imaginary mass irreducible realizations.
The problem is trivial for the “scalar” realization
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(3. 29) which is immediately obtained from Eqs. (3.2)
for m — 0 and from Eqs. (3.22) for 6§ —+0, when atten-
tion is paid to the fact that in the last case the limiting
process brings to two distinct irreducible realizations
corresponding to the double sign of H. On the other
hand, two different limiting processes can be considered
for the regular realizations corresponding to II = m?c?
>0 and IT = - 822 <0, According to the first one, w is
kept fixed when IT — 0: Then Egs. (3.32), (3.33) are
again trivially obtained from Egs. (3.17), (3.18) letting
m— 0 and from Eqs. (3. 26), (3.27) letting 6 — 0 pro-
vided that the subclass w> 0 (£ <0) is consideved in the
latter case, In the second one, the natural little group
invariants s and ¢ are kept fixed when II — 0 with the
consequences that w — 0. In this case [independently of
the sign of w () if 1 =— 8% <0], (W,, W,)—~ (0,0), W,
=p, becomes an invariant, the internal variables 7

and p, go over into the second set of the scheme B (see
Ref. 1) and the realization is no longer irreducible. If,
however, we restrict ourselves to an invariant sub-
manifold W;=y =const, the internal variables are ruled
out and the singular irreducible realizations (3. 30),
(3.29) are recovered. Of course these limiting process-
es can be directly discussed in terms of the unified form
(3.27) and its particularizations to the various cases.
Let us observe that keeping w fixed as m — 0 in the case
I =m%*> 0 amounts to let s going simultaneously to

+, For this reason the regular irreducible realizations
for zero mass can be interpreted as describing a parti-
cle with infinite spin. On the other hand, the irreducible
realizations corresponding to I1=0, 2 =0, '=y#0 can
be naturally interpreted as describing zero mass parti-
cles with a fixed helicity. The analogy with the unitary
quantum representations classified by Wigner® is
apparent.

F. Reflection properties

We want to discuss now the improper transforma-
tions of the full Poincaré group. Our attitude here will
be to seek for the irreducible realizations of them by
means of canonical or anticanonical mappings within
the phase spaces of the ivveducible vealizations of the
proper group classified in the preceding subsections.
Clearly, other irreducible realizations could always
be constructed for all kinds of space and time reflec-
tions by allowing for suitable disconnected phase
spaces. This point of view, however, seems to be quite
unnatural in a classical framework,

As we have seen, a definite mapping of the space of
the canonical generators onto itself exists for each
canonical or anticanonical realization of the space and
time reflections [see Table (2.17)]. Therefore, since
every irreducible realization of the proper group is
connected with an irreducible manifold in the generator
space (invariant under the proper group), it is neces-
sary that this manifold is transformed into itself also
under the discrete mapping if the corresponding reflec-
tion has to be canonically (anticanonically) realized in

" the sense required above, {Note that a canonical or anti-

canonical transformation in the space of the generators
of a Lie group necessarily maps an irreducible in-
variant manifold into another irreducible invariant
manifold. Let {y,,yu}:c;‘,yﬁyw be the Poisson brackets
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among the generators and consider an invertible map-
ping (Vi,...,¥,) = (3},...,9) such that {y}, yc}

=2 (Chyrtdyg). Let Fy(yy,.noyv)), ., 3y, ... ,9,) be

a possible choice of the independent canonical invariants.

Then also 3,(y4,...,¥), ..., (], ..,¥;) are in-

variants because

3
{S‘i(y;’ LIRS ’y:‘)’ yp}: aif{st(y{, LI ’y:)yytly}: 0
[
(t=1,...,k) holds true. Therefore, we must have

NRCHAN TR 7K NCPPRUT S MO NG 7R 28]

and consequently the manifold J(y1y...,¥,)=C1s.-.»
3u(¥4y+ ..y ¥p) =C, is mapped into the manifold

3‘1(3}1, see ’yk) :fi(CI’ tee ’Ck)’ LR ,Sk(yly e ayr)
=fu(c1,...,Cs). } Provided that the invariance of the ir-
reducible manifolds in the generators space is assured
also for the discrete operations, the transformation
properties of the canonical variables ¢;, p; are uniquely
determined by the equations

D’i(‘L K’ T’ H):LIH

B;(J,K,T,H) =p; (3.43)
(6,j=1,...,sdim. kernel)
and the mappings (2. 17).
Accordingly, we have the following situation:
1. Case I=m?ct>0
The manifold
I =m?c? S=s (3.44)

is composed of two disconnected parts corresponding to
different signs of H which are separately invariant
under the proper group. All of the mappings classified
in Table (2. 17) leave the manifold (3. 44} invariant,.
However, the anticanonical space reflection and the
canonical time reflection change the sign of H. There-
fore, only the canonical space reflection and the anti-
canonical time veflection can be realized in both the
regular {s#0) and the singular (s =0) irreducible
realizations.

2 Case l1=8§%c2<0

The reflection properties of the little group variables
result [see Eqgs. (2.17), (2.38), (2.39)]:

Transformation Canonical real.

Wp—=Wr Wrp—=-Wy
Space reflection W,— - W, w,— W,
WU g Wv W‘U - “/D
We—W, We— W,
Time reflection W,—- W, W,— W,
Wv - = Wv Wv - Wv
(3.45)
We distinguish the following subcases:
(a) ¢=-w/5%?*<0;: The manifold
N=-08%c, Z=¢g, (3. 46)

is irreducible and invariant under all of the full group
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Anticanonical real,

transformations. Therefore, all diffevent kinds of rve-
flections can be vealized within the corresponding irre-
ducible realizations.

(b) ¢ =-w/8%c*> 0: The manifold (3. 46) breaks into
two disconnected parts corresponding to different signs
of Z,= W, which are separately invariant under the
proper group. Therefore, only the transformations
which do not change this sign can be realized in our
sense, namely the canonical and the anticanonical time
reflections.

{¢) &=~ w/6%*%=0; The invariant manifold (3. 46)
breaks into three disconnected parts corresponding to
Z,>0, Z,<0, Z,=0 and separately invariant under the
proper group. In the first two cases only tZe canonical
and anticanonical time reflection are admitted while in
the third case, which corresponds to the singular reali-
zations, all kinds of reflections are vealizable.

3. Case I1=0

The irreducible invariant manifolds (proper group) of
the regular realizations are defined by

W=w>0,
H/|H|=+1 or H/|H|=-1.

(3.47)

Therefore, only the canonical space veflection and the
anticanonical time veflection can be realized. The same
situation occurs for the “scalar” singular case w =0,
¥=0. On the other hand, in the singular case with a
fixed helicity (w =0, y#0), the irreducible manifolds
invariant under the proper group are

FE WT:79

H/|H|=+1 or H/|H|=-1, (3. 48)
and only the anticanonical time reflection can be
realized.

4. Casell=0,H=0 T=0

Taking into account the reflection properties of the
canonical invariant 3, =J-K, it is easily seen that all
kinds of veflection transformations can be vealized
provided that j, =0; on the other hand, if j,#0, only the
canonical and anticanonical space—time reflections are
realizable,

In conclusion, we summarize the results in the tables
at the end of this paper, where the transformation prop-
erties of the canonical variables are explicitly given.
Note that the detailed transformations of the “internal”
variables 7, p,, (x,p,) in the various cases can be simp-
ly derived from Eqs, (3. 45) on the basis of their
geometrical interpretation: See in this connection Egs.
(2. 43) and the discussions given in Ref, (2).

4. TWO-PARTICLE SYSTEM
A. Free particles

Let us introduce two sets of canonical variables
i, P1, 92, P2 and write

J=q;\py +q2/\py,
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_bug _Pxn
K c 9 c a2, (4, 1)

T =p;+py,
H=cpyy+cpag, Pio= vmgcz +p? (£=1,2).

This realization describes two free particles without
spin and masses m, m,. The variables (qy,q;), (P1q,P1;
P2, Do) satisfy Egs. (3.3), (3.8) and (3.4), (3.9), re-
spectively; then q, and q, can be assumed to represent
the positions of the particles and (pqy, py), (Pg,Ps) their
linear 4-momenta, In order to construct the scheme B
(see Refs. 1—3), we first define the expressions

P=$-p +p, @.2)
2 puMc’+H) =cps* P pa(Mc®+H)—cpr+ P
Q=0= Mc(Mc? + H) U+ Mc(Mc? + H) 2

clgqy — -P
+ Mﬁ;}(]m"lz;llﬂ (Daob1 = b1gP2), 4.3)

where Il = M%? and § and Q are given in terms of the
canonical generators according to the scheme A;. These
expressions represent “external” variables, being P the
total momentum and Q the canonical centev of mass

(see below). Then, we have to construct six quantities
which have zero Poisson brackets with P and Q. A
well-known possible choice is in the form of two vec-
tors m and p obtained in the following way: First one
defines 7 as the relative momentum in the center-of-
mass system (more precisely in the center-of-momen-
tum system P =0); then one performs the canonical
transformation

oF oF
Q=<3

AP’ . (4-4)

am’

where F=q;-p;(P, 7)+q; - p;(P, 7) (see also Refs, 5 and
17). The result is

7= Dap(Mc® +H)~cpy- P _ p1p(Mc*+H)~cp; - P
- Mc(McZ+H) ™ Mc (Mc? + H)

P2,

For future reference we give also the inverted formulas:

—o__ PP CTyTeg 1 cn-P
%=Q M(Mc? + H) 7r10H+c1r-PP+Mc 20" M+ H) P
+p-P< 1 __ T20 T
M \Mct+H w H+cn-P)"’

~ p-P CTiTag 1 ( cmeP
% =R 3100+ B) TpgH - cn PL Mo N0 Mot A ) P

T ) 7, 4.7

+p-P( 1
M \Mc*+H wyH-cm-P

M(Mc2+H)+c1r-PP by ToH+cm- P
) 10

p1:ﬂ+

Mc(Mc? + H) Mc? ’
Tog(Mc? +H) —c - P Tl —cm- P
Pp=—T+ 2 ) P; p20= .

Mc(Mc? + H) Mc?

The expressions (4. 5), (4.6) together with P and Q
provide a system of twelve canonical variables. As said
above 7 is the relative momentum in the system P =0,
while p is a kind of relative coordinate the meaning of
which does not seem to have been exhaustively discussed
in the literature. In terms of the variables P, Q and

w,p, the canonical generators (4.1) assume the form

J=QAPS,

H SAP
K"__QQ 9 3

c Mc?+H (. 8)
T=P,
H=cP,=+c/MEC?+ P2,

with
S=pAm,
4.9)

= Y o i3 )
Mc =715+ Ty = + VM3 + M2 +Vmiee + 12,

Equations (4. 8) are to be confronted with the corre-
sponding expressions for the single free particle in the
form (3.12). The construction of the remaining six

4,
®.5) variables of the scheme B in terms of the “internal”
P 1 (1 1 . . . . .
P=Qi—=do+(q;=qy)* P m 778 P variables p, 7 is essentially equivalent to the solution of
* Mo T2 a velativistic Hamilton—Jacobi problem for the intevnal
_cn-P 7| (ny = VPECTERE, i=1,2). 4. 6) motion, This is done in .the Appendix B. Finally, the
Hiyomaq i whole scheme B results:
Py =%y=P, Py=%,=P, Py=P;=P,
Q=019 @=0:=6¢, &3=Q3=0Q,
(By)
Py=9B,=S, P =V, =S Py=VT,=Mc
_ B Sy _ _metanf - pw _PT, Ty
Q4= Q4 =arctan S, @5= arCtanSernwﬂgtanB S 9= e ;rziﬂs_‘z%

where 8 and Mc are given by Eqs. (4.9) and polar
canonical coordinates have been introduced for the in-
ternal variables p, 7. The expression of the scheme B
in terms of the original variables q,,q,, Py, P2 is im-
mediately obtained through the formulas (4.2), (4.3)
and (4.5), (4.6).

We see from the scheme B; that none of the canonical
invariants reduce to a constant and that the third and
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fourth sets of the scheme B, in the sense of Ref. 1, are
empty. The phase space contains invariants submani-
folds of the form

P;=S=const, Pg=Mc =const, (4.10)
and the realization corresponding to the two-particle
system is nonivveducible, The variables @; and @;

represent a simple relativistic generalization of the
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corresponding variables for the Galilean two-particle
system whose physical meaning has been discussed in
Ref. 3, Sec., 7.

We want to discuss now with a greater detail the
physical meaning of the variables Q and p. As it is well
known, many definitions of center-of-mass have been
proposed for a system of particles (mainly noninteract-
ing) (see Refs. 11—13, 17, 18). A simple choice is
provided by extending the nonrelativistic definition re-
placing the dynamical masses for the rest masses of
the particles!!

ny

R= my P )"1<
VI—&/c?T VI=8/c? V1-8%7/c? 4
1 1

(4.11)

Wiy
Asae ‘h) :

In our case of free particles this amounts to putting

pobuditbad __ cy
P19 +P20 H

[see Eq. (3.36)]. This quantity changes in time accord-
ing to the expected law

4.12)

c?

R’:R+67{R,H}:R+67H

P; (4.13)
however, it is not invariantly defined: It does not satisfy
Eq. (3.8). Another possibility, suggested by Fokker
(see Refs, 11, 13), consists in defining first the above
center-of-mass in the system P =0 and then in any other
reference system by Lorentz transforming it. In our
formalism this new quantity can be written

SAP SAP

X=Qeymezem R mm

(4.14)

Actually, X reduces to R for P =0 and satisfies Eq.
(3. 8) [in this connection see Eq, (3.14)]. We have again
2

X’=X+GT{X,H}:X+67‘%P. (4.15)
However, the Poisson brackets {R,-, RJ-} and, as already
seen, the {X,-,Xj}’s are different from zero. Conse-
quently, neither the components of R nor those of X can
be used as canonical variables, A third possible defini-
tion of center-of-mass is provided by the canonical vec-
tor already introduced!! [Eqs. (2.32), (2.43)]. This
does not satisfy Eq. (3.8), however; it is simply related
to R and X, reduces to R=X for P =0, and its time
evolution law is

2

Q’:Q+6T{Q,H}:Q+GT%P. @.16)
We shall refer to R simply as to the center-to-mass, to
X as to the covariant center-of-mass and to Q as to the
canonical center-of-mass. Finally, notice the connec-
tion formulas

c’SAP  HR+Mc*X

Q=R+ oiit ) - MoZaH

4.17)

which have been used in Eq. (4. 14) implicitly. Before
ending the discussion of the center-of-mass, let us ob-
serve that if the rest masses are used in its definition
instead of the dynamical masses as in Eq. (4.11), the
resulting center-of-mass is not in general at rest in the
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system P =0. Pryce!! stresses in addition that if the par-
ticles interact with one another this Newtonian center-
of-mass does not move uniformly along a straight line
in general. On the other hand, the definition (4. 10) [and
(4.13)] can be simply generalized to particles interact-
ing through a field. It is worth stressing here that this
generalization is not a minor problem in our present
context. Actually, we will show elsewhere that the
identification of a uniformly moving centev-of-mass in
teryms of the covaviant position coordinates of two par-
ticles interacting at a distance is an essential part in
the choice of a dynamics.

Let us turn now to discuss the physical meaning of
the variable p. We note first that in the system P =0
equation {4, 6) becomes

Peom. =1, — 2 (4.18)

CoMMo

On the other hand, let us consider the Lorentz trans-
formation from the laboratory system to the system
P=0:

P.x(t) - t{Mc? + H)
M(Mc? + H) ’

Xcome (tCan) =x(f) +

(4.19)

b - tH-P-x(t)

Ceme Mcz ’

and the inverse transformation
P.x, (o) +to o (Mct+H)
t - t CoMla \" Collle CoMe

x( ) xc.m.( c.m.) + M(MC2 +H)

(4. 20)

tc,m,H+P " Xoom. (tc.m.)
Mc? ’

From Eg. (4.19), putting £=0 and x,{0)=q, (7=1,2), it
follows

t=

P'qf

chm(tg'cm)=qf+ 2 P,
» Collle 17Ty Coms M(Mc? + H)
(4. 21)
tg,c.m. =-P 'Qf/MCZ (1=1,2).
Then, using the relations
cm
q1, Colny (t) '_'ql, CoMs + ;T— t}
10 (4.22)
cm
9z, com, (t) =4q2, com. — 71_ ¢
20
we obtain
_ P-q P.qy m
U, come =N+ Jr7c2 +H)P+ Mc my’ (4. 23)
_ P-qo P.qo m_
e = FOLTL I T M Ty’

and

4, com, =~ 2, com. =1 — q2

N (QI_QZ)'PP+[(ﬂL +&)-p]L

M(Mc? + H) Ty Ty Mc *
4. 24)
Finally, comparing with Eq. (4.6), we get
B _ a2 (P +w-P
p 'ql. CoMo q2. CoMe [7710”20 ( PO
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L Q@-P Pm—ﬂ°P> -
TypT2g P, Mc

1 [fp109 +1>ng2> ]
=1, como ™ e Coto — “P|m
b s com 7710”20[( B

=d1, come — 92, com, — (X° P)‘” (4- 25)

T1oT20
Again, from Eq. (4.19), replacing X(f) for x(¢) and put-
ting /=0, we can write
X-P
M(Mc? + H)
=-X-P/Mc?,
Then, using Egs. (4.22) and (4. 26), [and the fact that

{m,H}=0and P-{K,7,;}=0, see Eq. (4.38)], Eq. (4.25)
can be written

xcem. <t20mo) =X+ P7
{4. 26)
[0

CoMo

p:qi,c.m.(tocama)—qZ.c.mo(t(f]:.m.) (4 27)
or, since the instant £=0 has no privileged role,
p(l) =4q1, com. ([comq) - q2,c.mo(tc.mo)a (4. 28)
with
P-X(t)~ t(Mc? + H)
Xem (lom)=X0) + p
CoMo oMo A/I A"LI 2 H
(Mc® + H) (4. 29)

lem, =[tH~P-X(O)]/Mc?.

Equations (4. 27) or (4. 28) provide the desired physical
meaning of the internal variable p; that is, p equals fhe
diffevence between the position vectors of the particles
evalualed in the system P =0 at the time signed by the
clock tied to the center-of-mass X when the labovatory
clock points to the consideved value (.

A consequence of Eq. {4, 28) is that the values of p
in two reference frames connected by a Lorentz trans-
formation in the direction of P are related by

p' (") =p(D) (4.30)
with
Trty _ 1 X(t)'PB_ CtB E
X(I)AX(t)+<\/1__FI—1> 2 D =% b’
4, 31)

L= (3/0X(0) - B/P
V1= B2 ’

In particular, for an infinitesimal transformation, put-
ting { =0, we can write

(4.32)
(4.33)

p'(dly=p or p’=p(=05t),
X'(50) =X, 6l==(60/c)(X-P/P).

An equation corresponding to Eq. (4.32) in terms of
canonical generators is

P-{K,p;}=X-P/cHp;, H.

This relation can be checked directly using Eqs. (4. 8)
and the first of Egs. (4.9). Actually, from

2 1
- _piPi—8ipe Pt ( 0. (S/\P)i> M
{Aw p]} Mct+ H * H l]Ql * Mc2+H é‘nj

(4.35)

(4.34)

1516 J. Math. Phys., Vol. 16, No. 7, July 1975

it follows that
Mc? M _X-P

P-{K,p,-}:—‘iI—Q'Pa—ﬂj = {p;, H}. (4.36)
In the same way we have formally
Ky b= m—Pa'f:cS:_lzg ~ %2 <MQi + %)%
(4.37)
and
P-{K, 7} =(X-P/c){x,, H}. (4.38)

It is important to stress the fact that the results ex-
pressed in the Egs. (4. 36), (4.38) hold true indepently
of the particular form of the function M, Equations

(4. 34)—(4. 38) are to be confronted with Eq. (3.8).

To conclude the present subsection, we note that,
according to the results of Secs. 2 and 3f, the improper
transformations are realized in the following way:

canonical space qu:—é‘r: g‘r: —gﬂ (T:l, 2); (4 39)

reflection NG T :
p—~=p, T—-m,

anticanonical g:%ﬂ 11’;: - g‘r) {r=1,2), . 0)

time reflection ! -5 ’
P~ p, T -

anticanonical qr—=q; P~ Pn (T: 1, 2);

space—time Q—-Q P—P, (4, 41)

reflection p—=-p, 7.

B. Interacting particles

As is well known, the introduction of an interaction in
a two-particle classical relativistic system described
within the Hamiltonian framework poses serious prob-
lems, &®19-% 1 particular, the zero-interaction the-
orem established by Currie, Jordan, and Sudarshan’
prevents the possibility of modifying the expression of
the canonical generators in any nontrivial way while
leaving the conditions (3. 8) simultaneously satisfied by
the canonical vectors q; and g,. This means that a
relativistic theory of two interacting particles in which
the coordinates x; and x, play the role of canonical vari-
ables cannot exist. Bakamjian and Thomas® (see also
Foldy®), however, have proposed a formal procedure
for introducing a direct interaction between the parti-
cles which appears quite natural in the context of our
formalism, This procedure consists in preserving the
structure of the canonical generators as given by Egs.
(4. 8) and the first Eq. (4. 9) and in modifying the second
Eq. (4.9) by means of the Ansatz

Atlczzc(ﬂ10+7r20)+U(p,7r). (4. 42)

Provided that U(p, m) is a rotationally invariant func-
tion, i.e., a function of the variables p=ipl, w=i7l,
o=p-monly, the center-of-mass energy Mc? satisfies

{s;, Mc%=0 (4.43)

and the fundamental Poisson bracket relations (2.4) are
preserved,

The function U{p, #) plays here the role of the classi-
cal potential in the nonrelativistic theory and Egq. {4.42)
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goes over into the corresponding expression for the
Galilei group in the limit ¢ —~ <, If one assumes that the
vector p shares a simple relation with the relative co-
ordinate of the particles in the center-of-mass frame
also for U(p,m) #£0, as it is strongly suggested by Eq.
(4. 36), one is lead to assume that U(p, 7) vanishes
rapidly enough for p — ., Under this condition, the
quantities q,,q, as defined by Egs. (4.7) in terms of the
basic variables Q, P, p, 7 will satisfy Egs. (3. 8) for
large p values and will therefore be interpretable as
relativistic coordinates of the particles at least in the
asymptotic region. This should be sufficient, e.g., for
a description of scattering processes within our canoni-
cal realization, 2%%

We stress, however, that in order to achieve a
satisfactory and complete physical interpretation of the
formal prescription (4.42) it is necessary to construct
dynamical variables x,(Q, P, p, 7) and x,(Q, P, p, 7) (ob-
viously noncanonical!) which can be interpreted as
physical position vectors of the interacting particles
throughout the whole phase space because of their prop-
er relativistic transformation properties. This problem,
which is strictly connected with the formulation of an
action-at-a-distance manifestly relativistic the-
ory, =225 will be discussed and solved in a separate
paper.

5. “RIGID” BODIES

The introduction of a direct interaction according to
the line of the preceding section enables us to general-
ize the concept of rigid body to the relativistic case in
a natural way by considering this system as a limiting
case of a system of particles with suitable interactions.
We shall confine the discussion to only two very simple
examples, the second of which having a purely formal
character,

A. Relativistic linear rotator

We consider a system of two interacting particles for
which the potential is a function of p only:

1
Mc =Vmlc? + 72 +Vmgc? + 2 - U(p) [see Eq. (4.42)].

(5.1)
Introducing polar canonical coordinates for the internal
variables (¢, 8, p, 7,, 7, 7,), We can write

m =2+ S%/p?, (5.2)
where

S, == singn, ~ cosg cotlr,,

S, =cosgng— sing cotbr,, (5. 3)

S,=m,.

A system of two heavy particles rigidly connected can
be seen as a limit case of the above system with a po-
tential U(p) which constrains the two particles to a
fixed distance p; in the center of mass system. Then we
are led to set

P~ Py, ﬂp_’()’ U(pO)—’O (5-4)

in Eq. (5.1), with the consequence that
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Mc:\/m§02+52/p%+\/m§c2+82/p§. (5. 5)

In particular, for the symmetric case my=mqy=m,, We
have

Mc =VmZc? + mSZ/7I, (5. 6)
where we have put

m=2m,, I=(my/2)p}=pupi. (5.7)
Then, one is lead to the Hamiltonian

H=cVMZc?+ P =cVmic? +mST/T+ P2, (5. 8)

Notice the close formal analogy between this system
and the nonrelativistic rigid rod (nonrelativistic linear
rotator) discussed in Refs. 2, 3. Actunally, this last
system can be obtained as a limit case for small P/ me
and $%/mc?l.

As Eq. (5.5) itself shows, however, the system de-
fined by the Hamiltonian (5. 8) cannot be considered as
the most general relativistic rigid rod. As a matter of
fact, it can at most correspond to a particular kind of
rod in which the linear mass distribution satisfies spe-
cial symmetry conditions.

The scheme B for the system (5. 8) is identical to the
scheme B for the nonrelativistic rigid rod apart from
the structure of the fixed invariant. Besides the varia-
bles of the first set {(see Ref. 1) which have a common
form, there are variables in the second and third set
according to

2
P,=V3;=S 1= 2_%5_:7,1262
tand
Q5= au*c:tanlri;'i (By)
The time evolution of the variable @; is given by
1 mc?
Q§:Q5+5T{Q5,H}:Q5+ET b7, (5.9)

so that, since ¥ is a constant of the motion,

. 2
Qs(t) = Q5(0) + = <,

51 H (5.10)

Recalling the discussion given in the nonrelativistic
case, and considering the physical meaning of the vector
p(f) in the present case, we realize that @; is just the
angle between the “rod” and the half-plane defined by

the vector S and the z axis, in the center of mass sys-
tem at the time ¢ of the laboratory system. For P =0,
Eq. (5.10) reduces to

Qs com (1) = Qs om. (0) + o= 22

21 M
The factor Mc?/H =1 - c?PZ/H by which the time
derivatives of @5 and @, . n,, differ expresses the rela-
tivistic time dilation, This model appears as the most
simple conceivable example of a clock treated as a spe-
cifical dynamical system.

(5.11)

Notice finally that Eq. (5.10) reduces to the corre-
sponding nonrelativistic one [see Ref. 3, Eq. (79)] for
both P? and §? small. If P2 is small but $¢ is not negligi-
ble, the angular speed of the “rod” in the relativistic
case is smaller than in the nonrelativistic one.
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B. Other rigid systems

The construction of more complex rigid systems by
means of the same limiting procedure considered above
would require complicated considerations involving a
number of particles greater than two, We shall not do
this explicitly. We observe, however, that we can give
very simple formal generalizations of the Eq. (5. 8) to
systems with six degrees of freedom. Precisely, the
expression

9 2 1/2
H:c[mzcz+m(E‘ = —E-‘:->+P2:| (5.12)

21, 21

could be interpreted as Hamiltonian for an asymmetri-
cal top (rotator); and the two particular cases |

H=c[mc +—Sz+m( 1>E§+ (5.13)
I,

I

1/2
pz]

and
1/2
H:c(m c +-—Sz+P2)

as Hamiltonians for the symmetrical and the spherical
top, respectively (for the corresponding nonrelativistic
cases see Ref. 3). [Zu Z,, Zr denote the components of
the intrinsic angular momentum referred to the body
system, | However, as indicated by the case of the
linear rotator, Eqs. (5.12)—(5. 14) define relativistic
objects which must be considered very particular ex-
amples of the systems mentioned above.

(5.14)

In the case of the spherical top, the relevant part of
the scheme B is given by

Ps=$

e tand

@5 =arctang— 7,7,/ Scosé

34=9,- Z?SZ =mi® Pg=%,

Q= arctanﬁ

Zg

In the case of the symmetrical top, instead, a possible choice is

_3‘2 Sz_ 9o I-1Ip

P.=S pP.=2_ 2 _
5 s 7 me + I, Eg
metand I 1 Za
= t Zn
@5 =arctang— T /S coso Q=72 I, 2%, arCtanzf

The expressions of the variables @; and @, in Eqgs.

(Bs) and (B,) are identical to those of the corresponding
nonrelativistic systems. Only the expressions of J% in
the scheme (B;) and of Pg in the scheme (B,) are suit-
ably modified. Also the physical meaning of the varia-
bles @5 and @, is the same as in the nonrelativistic case.
In particular, in the case of the symmetrical top, @;
and Qg are the precession angle and the proper rotation
angle, respectively.

The time evolution of these variables is given by

1 mc?
Qs(1) = Q5(0) + 53 1, Qs(1) =Q400), (5.15)
in the case of the spherical top, and by
1 mc? 1 mc?
Qs(1)=Q5(0)+ 57 5t Qe()=Q5(0)+ 5 F— 1, (5.16)

in the case of the symmetrical top, where we note again
the relativistic time dilation factor.

APPENDIX A: CONSTRUCTION OF THE SCHEME
A FOR THE HOMOGENEOUS LORENTZ GROUP
We have
{7:, Jj}ZEiijky
{1, Kb = €5 K,
K K= 2

(A1)

€ i k-
By virtue of the results of Ref. 2, Sec. 2, for the
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(By)
'rotation group, we can put
P, =J,, Q;=arctan(J/J,). (A2)
The system
{$1) (IJ(J’ K)} = 0’ {Di’ (I)(Jy K)} = 0’ (A3)

is complete and admits four independent solutions. It is
evident that any scalar (pseudoscalar) built up from the
generators is a solution of the system. For instance

J=|J|, K=|K]|, (A4)

A further independent solution remains to be deter-
mined which, obviously, cannot be a scalar. Since

J,, K, and the scalars (A4) are five independent variables
which have zero Poisson brackets with $;, in order to
find the remaining solution it is sufficient to look for a
function &, of such variables having zero Poisson brac-
ket with ;. We must have

J-K-J.K, 3% 2%
Je—J2 9K, ad,

{Qy, &= (A5)

Thus ®; can be assumed to be a function of only J,, K,,J
and J- K. Solving Eq. (A5) by the method of the charac-

teristics, % we find
K.= (J-K/JDV, [AKAIT]
;= PO T EE_AE" (A6)

Now we can choose B, =J and look for a function Q, of
J, ®; and the remaining variables such that

{Q,,J1=1 (A7)
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holds true. We have

[JAK],

{‘I)bJ}= JE = 2172 (A8)

while, obviously, all of the scalars (A4) have zero
Poisson brackets with J. The expression (A8) must be
solution of the system (A3) by virtue of the Jacobi identi-
ty and therefore it could be reexpressed in terms of &,
and the variables (A4). It is more convenient to denote
the expression (A8) by &, and to take advantage of the
fact that

{8, I} =®,, {®y,J}=- &, (A9)

This means that Q, can be assumed to be a function of
®,, ®, and J, and Eq. (A7) becomes

5,0 5202

Al
2%, 2%, (410)

Since a solution of the associated homogeneous equation
is
¥ = &} + 83, (A11)

using &, and ¥ as independent variables in place of &y,
&, we obtain

e ____ 1
20,  (@-BI2 (a12)
i.e.,
_ 82\ _ JNK],
£, =arctan (— lI)1>—arctan T K.~ K, ° (A13)

We are left to find two independent functions of the
variables (A4) and ®; which have zero Poisson brackets
with B, and£),. Now J-K is easily seen to have this
property, while

{0, K?}=2J. (A14)
Therefore, owing to Eq. (A7), it follows that the ex-
pression J—K? provides a possible choice for the re-
maining independent function with the desired property.
In conclusion, we have obtained the scheme Ag.

APPENDIX B: DETERMINATION OF THE VARIABLES
Q; AND Q, OF THE TYPICAL FORM FOR THE TWO-
FREE-PARTICLES SYSTEM

The variable Q5

According to the constructive procedure given in
Ref, 1, Theorem 2, we have to find a function @;(p, 7)
such that

{Q4’ QS}:{PM Qs}:O, (Bl)
{Q57 PS} = 1; (Bz)
{Qs, Pgt=0, (B3)

hold true. Introducing a polar representation for the
“internal” vectors p, 7, we have®?
Py=S,=m,

Q= arctanﬁ _ _cosgme — cotf singm,
4 S, - sinegnm,—cotécosgr,’

Py=S =V} 73,/sin?,

(B4)
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Pg=Mc =1+ Ty
=VmicT+ i+ S/p + wlmgcE +m2+/pl,

From the results of Ref. 2, Sec. 3 and Appendix A, it
follows that a solution @Y of Eqs. (B1) and (B2) is

QY=arctan(m,tané/S). (B5)
Then, putting
Q5=Qg+‘1>(f’, Tpy S); (BB)

we look for a function ® such that Eq. (B3) is satisfied.
We obtain the equation

@ St S

‘)Tp—a;+pa—ﬂ_p+'p—2'—‘0. (B7)

Since a solution of the associated homogeneous equation
is

‘I’(pa Moy S) =7sz+52/pz,

using p and ¥ as independent variables in place of p and
7, we obtain from (B7)

0% S

(B8)

44

B pr@—Se/pR)iTE (B9)
a solution of which is
& = - arctan(pr,/S). (B10)

In conclusion, from Egs. (B5), (B6), (B10), we have

s =arctan 7o tan? - arctanﬂ’
S S
_ g tand — pm,
-arctan S+pm,mytand/S - (B11)
The variable Qg
We must find a function 4 such that
{Q4, Qet ={Py, Qc} ={P5, Q¢} =0, (B12)
{QS! Q6}= 01 (B13)
{Qq, Pgt=1 (B14)

hold true. Equations (B12) are automatically satisfied
if we consider a function ¥ =¥(p, 7,, S}. Equation (B13)
then gives

oW pS ov TS 0¥

3 T o (B15)

which can be solved by the method of the characteris-
tics. 28 Precisely, the general solution will be an arbi-
trary function of the independent integrals of the system

ds _St+p'nl

d, S ’
p P (B16)
am, __ T
dp p’
Now, two integrals of (B16) are
ki(p, 7, S) =72+ S/p?,
(B17)

kZ(p; T ps S) =p7,.
Therefore, the general solution of Eqs. (B12), (B13) is
T =¥ (kq, k). (B18)
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We are left with Eq. (B14). Since
Py =Vmic® + ky + Vm3c? +k,,

{ky, Ky} =Ky,

{kz’Ps = P

T10T20

(B19)
k

17
it follows

QY _ TyeTyy 1
ok Pg Ky’

and finally

(B20)

Mo __PTp
s = Py m2+S/p?”
The determination of the variables Py, P, Py, @4, @5, @
in terms of p, 7 is essentially equivalent to the solution
of the time-independent Hamilton—Jacobi problem for
the “internal” motion with Hamiltonian Pg= Mc =y + 7.

(B21)

REFLECTION PROPERTIES

1. M=m?*>0. Additional invariants of the proper
group: H/ | H|

(@) Regulav realizations: s> 0

Transformation| Canonical realization | Anticanonical realization
P—-p, 474
Space by by, -X_‘_'X No
reflection p—-p, 4§ __q'
pr—==py, TA-T
P—-pP, a—q
Time Px= =Dy XTXHT
5 No — —
reflection p—~-p, 9—9
P Do T—==T
pP—p, q—-q
Space—time Py =Dy XTX*T
. No N
reflection P—P, -7
Py~ Dy TTHT

(b) Singular realizations: s=0

The internal variables y, py (7,p,) are missing. The
remaining transformations are the same as above.

2, I =6%? < 0. Additional invariants of the proper
group: W5/ I1Wyl if w <0 with W,#0

(@) Regular realizations: w+0 or w=0 with W, 0

Transformation | Canonical realization| Anticanonical realization
only if >0 only if 2> 0
— —
p~-p, 9—-9 |p—p, §—-9
Space pr— =Py, TTU-T Pr—=Pn T THT
reflection Pe—bes E—¢ P~ by E—%
P T =Py O~ ¢ P Pus (el
Dy =Dy Py— by V-9
p~p, 4-9q p—-p, a—9 \
Time [ 28 T7 D= Py TT-T
reflection by =b ET-% Pr—h, E—-&
Po~ Py (2l Po=T=bpo—¢
by Dy [ Dy by, ==y
only if w >0 only if >0
— andy — —
| gl 2 q9—--9 pP—p q—-=-9q
pr= =P TTA=T | D= =Py TTTHT
Space-—~time
reflection b=ty E—-4 be—Pos -~
Po=T=Po 97=@ | P P0 P¢T=@
by Py, by by o =9 |
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(b) Singulay realizations: w=0, W,=0

The variables 7, p, are missing. The remaining
transformations are the same as above and are all
realizable.

3. II=0. Additional invariants of the proper group:
H/|H|, Tifw=0

(a) Regular realizations: w#0

Transformation | Canonical realization | Anticanonical realization
Space P—-~p, 3’-——q No
reflection pr—=p,, TTA-T
Time - - q-7

_ No P~-p, 99
reflection PPy TT~-T

- — —
Space—time No pP—p, q—--~-q
| refiection Pe—=—=P; TTH+W

(b) Singular (helicity) vealization: w=0, I'=y#0

Transformation | Canonical realization | Anticanonical realization
fi?lceection No No

E(Z;Illjction No L }.ﬂﬁ
Space—.time No No

reflection

(c) Singular {(scalar} vealizations: w=0, '=y=0
The same possibilities exist as in the regular reali-
zation with the variables 7,p,; missing.

4. II'=0, T=0. Additional invariants of the proper
group: none

Transformation| Canonical realization | Anticanonical realization
only if j»=0 only if j,=0
Space
rls)eflection ba=be, aTa Pa=bo, @TadT
Py Pw B~ pBem Ps™ Ps, B—=m-8
only if j,=0 only if j,=0
Time
reflection Pa=Pu @ o Pa—=Pos ¥ asm
bs~be BB+ | Py iy B—1—g
Space—time Pa— Doy, a0 ba——bu G—atn
reflection Pe— De, B8 Pa— e B8
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Boundedness of linear integral operators in weighted L ,

spaces
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Boundedness properties play a role in the solutions of integral equations as well as in the question of
error estimations. A test for the boundedness of linear integral operators in weighted L, spaces is
presented, and applied to the neutron energy dependent transport operator.

1. INTRODUCTION

The boundedness of integral operators in L, spaces
was discussed by Kato,' and for the transport operators
of neutrons by Boffi and Spiga.? This question has also
some importance for the theory of error estimations, 375
In their representation Boffi and Spiga dealt with the
transformation

Kf:ka(x,x’)f(x’) dx’, 1)

which is bounded in the L (X) space, with
K, <M/ PMIHP) 1< psoo, 2)
The constants M, and M, satisfy the conditions

fxlk(x,x’)[dx' SM,<w (3)
for almost every x/€ X and
fx|k(x,x')|dst2<oo )

for almost every x € X,

However, when this test is applied to the energy de-
pendent transport equation, the conditions required by
Egs. (3) and (4) are not satisfied.

However, boundedness can be achieved when a weight-
ed space is applied. Such a test was given for the L, and
L, spaces.®” By applying a suitable weighting function
the energy dependent transport transformation was
found to be bounded in the L, and the L, spaces. By com-
bining the results of these tests with those of Boffi and
Spiga, a new test for the L, weighted spaces was
obtained.

2. THE TEST

Consider bounds of operators in the L,[X,w?(x)],
where the norm of a function in this space is defined
with a positive weighting function w{x).

AL, =L f, 176e) | PP} /2. 5
Theorem 1: If X is a measurable space, k a measur-

able function on XXX, w, and w, real positive measur-
able functions on X, and if

sup [ | ke, %) w0, (v} a0, () de’ < M, < ®
and
sup fxlk(x',x){wz(x’)/wz(x)dx’sM2<oo, (7N
x
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then the transformation
Kf(x) = [ b, ")f(x") dx’ (®)

defines a bounded operator in the L (X, {wi/?(x)/
wl/e(x)]?) space, where 1/p+1/g=1, and

K, < M}/ apy/* (9)
for any 1<p<eo,

Proof:
WEF, ={ [ | [ RO, 2 W) dx |t 12 0x) w0, 1 2() ] d} /2
<L | S [, 2 | et |, o) 0,2 (x) P} 19
= { L] S| R, x7) | oy (e Voo, () o | R, x7) |12
X |7y | dx’ {Alw,t 2 (x)/w,t e () ]ax} /2. (10)
By using Holder’ s inequality we obtain
NEF I, <{ L LL, 1 e, 2wy (/) de Il [ b, 27w, ™ 12 (x7)
x| f(x") |2 dc’ w2 12(x) /w0, o(x) i} /2
<Ml [ RGe, x| w72 9 ) | F(x )| 2

X, (X )w,(x7)/w,(x") dx dx 1 1#
< MMM ] fe) | Py (e i (er) dt 1T

=M M, (11)

For the case p=1, the transformation K is bounded
by®

1Kl s M,. (12)
In the special case that M, =M,=M we obtain
WK, <M (13)
forany 1sp <=,
Consider now the eigenvalue equations
Nofol) = fi e, X Mol dx” = KFox) (14)
and
NofE(0) = [y ', X)fF(x) dx’ = K*f3(x), (15)

where we suppose that the kernel k(x,x’) and its adjoint
k*(x,x’)=k{(x’, x) are real positive measurable functions
on XXX, There are cases in which the above equations
represent physical situations. Thus, the eigenfunction
f, and its adjoint f¥ are physical quantities. In many
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cases these physical quantities are known to be real po-
sitive measurable functions on X, These assumptions
imply that the eigenvalue ), is real. Now with these re-
strictions, in the space L,[X, (F*,*/?(x)/f,*/*(x))] according
to Theorem 1,

K, <Xo. (18)
From Eq. (14) we obtain

ol IFll, = LKA, < NEI SN, an
Thus, in this space

K], =x,. (18)
The norm of the eigenfunction f, in this space is
fall, =L fi FP I3 1 P0)/ f 2(e)y dx 12

= e fole)fo () de]t /2, (19)

Inequalities like (17) hold for any eigenvalue. This
fact, with Eq. (18) implies that », is the largest eigen-
value. Furthermore, there is no other eigenvalue for
which the corresponding eigenfunction and its adjoint
are real and positive.

3. AN EXAMPLE

The application of the presented test is illustrated by
an example from neutron physics. Consider the integral
transport operator for a single-region, homogeneous
medium, without fission

K¢ = f &r de'/dza' Irz(f)llf I, -0)

(20)

X3 (E'— E,Q -Q¢(r’, E’, Q).

The distribution function ¢(r, E, Q) represents the neu-
tron flux per unit energy, per unit volume and unit solid
angle. This function is assumed to be well defined and
measurable in the L, space for r€ V, Eceand Q€ w,
where V is the medmm volume, e_{ 0, ]}, and w
={{u,¢)= [=1,1]x[0,27]}. The total cross section =(E)
is expressed as the sum of the capture and of the scat-
tering cross sections

S(E)=3,(E) +  (E), (21)
where
B(E)= [ dE' [, EUT(E~ E', @-2)
= [,dE'T (E—~ E’). (22)

The scattering differential cross section obeys the de-
tailed balance relation

EM(EYZ(E—~ E',Q-Q')=E'M(E")ES (E'- E, Q' *Q),
(23)
where the Maxwellian distribution is
M(E) = lexp(~ E/ kT)}/ (kT)". (24)
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The solid angle @, is defined as

Q=(c~-1)/|r-r]. (25)
The constants M, and M, of Eqs. (6) and (7) for the
transport operator are

sup fd'“‘r’de’fsz'eXp (E)lr_r’]ﬁ(ﬂ - )
rE,Q Ir—r’|2 R
(26)

XT(E'—~E,Q" - Quw, (r', E', Q) w, (r, E,Q) <M,

Supfd:;rr [dEldeQ,EXp E(E)h‘—r’]ﬁ(_ QR_QI)
v

r,E,0 fr-r'|?
XZAE-FE', Q-Q"Yw,(r', E' Q") w,(r, E, Q) <M, (27)
Substituting for |r —r’| =R and for &°r'=R*dRd*Q,, as-

summing that w;, and w, are independent of r and Q, and

extending the volume integral over all space, Egs. (26)
and (27) are simplified to
E'—~ E,Q" - Q)w,(E")
su dE' | & Zs 1 =M 28
; }?[ f @, @) : (28)
TfE~E",Q-Qw,(E")
dE' | d2q == d 2= <M,
S“pf f Y mzEy (29)

There are many possibilities for choosing the weight-
ing functions. These functions may be different for each
physical problem. Chossing the weighting functions w;
=wy =1, unbounded constants arise. Choosing the
weighting functions w, = EM(E) and w, =2 (E), and,
using the detailed balance relation and Eq. (22), we
obtain

I, < supl= (E)/Z(E) <1, 1<p<w, (30)
E

The norm of the flux in L, space with these weighting
functions is

oll,={/[, &r [, dE [, d&Q¢*(r, E, Q)
X[S(EY/?/EM(EY 1a]p}t /2, (31)

For the case that p=1,
in a given volume V.

ll$ll, is the total reaction rate
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Statistical methods in quantum field theory
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We make the construction of n-point functions describing quantum field theory with the aid of
classical field equation solutions defined on five-dimensional space. We also introduce the generating
functional for » -point functions, fulfilling the first-order functional equation, the same for all local

interactions without derivatives.

I. INTRODUCTION

This work is devoted to adaptation of the methods used
to describe classical random fields!~® to quantum field
theory (QFT).

The main tool of these methods is the infinite set of
n-point functions or functionals generating them.,

Here we consider two functionals G and J,

It turns out that the functional G allows us to construct
QFT by means of classical field equation solutions de-
fined in five-dimensional space,

Unfortunately, up to now, there exist no effective
methods of solving of equations fulfilled by functionals
G in spite of particular results reached by some authors
(e.g., see Ref, 4),

The second functional considered here, the functional
J, is universal for all interactions without derivatives.
QFT with given interaction can be described with the
help of the functional J by the appropriate choice of its
function argument., However, up to now, the functional
J has been known in an unperturbative form in the case
of trivial interaction only.

As for to an interpretation of the above functionals,
one can say that in the case of random fields the func-
tional G is connected with average products of fields,
but the functional J is connected with so-called n-point
probabilities, *

Now we sketch the content of present paper,

In Sec. 2 the methods of statistical classical fields
are considered and the functional G is introduced.

Section 3 describes QFT by means of functional G.
There, some identities are also derived.

The functional J is introduced in Sec, 4. It fulfills
the first order functional equation, the same for any
local interaction without derivatives,

It turns out that the functional J is invariant with
respect of certain transformations of its function argu-
ment. This is result of the translational invariance of
pseudomeasure into integral representation of J.

In Sec, 5 it is explained the role of the fifth dimension
appearing in the classical equations (3.1)—(3,2).

2. STATISTICAL DESCRIPTION OF CLASSICAL
FIELDS

Let @ be an » — component field

@ls,0)={@y(s,%), ..., ¥,(s,x)) (2.1)
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defined on R'X R™ manifold satisfying a partial differen-
tial equation which is of first order in s:
a
55 @ls,%) =Als,x;90]. (2.2)
In general, A may be a nonlinear operator. The solu-
tions of (2.2) have a physical meaning then only if they
are experimentally verified.

That is not the case, for instance, for the Navier—
Stokes equations, where some averaging of solutions and
their products (n-point functions) have only a physical
meaning.

Advantage tools to description of such theories are
functionals used mainly to guarantee a compact de-
scription of equations fulfilled by »-point function and
symmetricity of one,

First, let us consider the functional

Glsiil= [ exp ééf Je)@uls, x5 0] (1,\) Flalpa

E.f' ettirelsiah Fla)ba, 2.3)
where ¢ are solutions of the starting equation (2.2) with
marked explicitly initial and boundary conditions «, F
is a smearing functional, 5« denotes a pseudomeasure
on the space of functions «.

G is related with n-point functions as follows:

('Z> 6—7(:(?) Oi(xn)c[sa]”jm

= /@[s,xl;a] corols,xalFlalbo,

The implicit assumption included in (2.4) about the
possibility of functional differentiation under integral
sign in (2.3) is not necessary if from the beginning we
consider the physical quantities only, namely »-point
functions, or use so-called functional power series.,”

(2.4)

Sometimes, however, it is useful to deal with the
functional integrals like (2. 3) since they lead more
quickly to the final result.

The equation which fulfills functional G is obtained by
differentiation of (2, 3) with respect to parameter s and
taking into account Egs. (2.2):

iG:i; Ax ju (2) Ay [c,x;—f%J G. (2.5)

s

In Eq, (2.5) there do not appear the solutions of

starting Eq. (2.2) and, de facto, they are not needed to
find the functional G.
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The representation of the functional G in the form
G[s;]']:f expli [ j(x)a(r)dx]F[s;aloa (2.6)

reveals a true amount of information taken from Eq.
(2.2) to obtain r-point functions (2.4).

Indeed, substituting (2.6) into (2.5) and integrating
by parts, we obtain for F the equation

3}
~F+L/dxA s,x,a]éak( )F
$ 8 Ae[s, ;]
which for fields with restriction
| s,x;a)
L/ O AT 2.8)

is an equation for integrals of motion of the differential
equation (2.2).

The condition (2. 8) is always fulfilled for the canoni-
cal systems [see (3.2)].

3. DESCRIPTION OF QFT WITH THE HELP OF
THE FUNCTIONAL G

In this section we shall show that QFT of one scalar
local field can be described by means of functional G
connected with some classical equation; however, the
smearing functional F appearing in the definition of G
functional has no interpretation of the probability
density,

For that purpose let us consider a self-interacting,
scalar, classical field defined in R'xXR*:

<22+m— )X(S,x)z—L’(X(S,x)), @.1)

where (s,x)€R'XR%, [’ denotes a derivative of Lagran-
gian density.

Equation (3.1) can be described in a canonical form
by introducing new fields ¢, =x and ¢,=%:

. o6H
‘plzé_@EAl:@z,
SH (3.2)
Py = —W: Ay=w O- mz)(pl =L ((ﬂl):
where H is a Hamiltonian of the system (3.1);
H= [ dx[3(@, P+ 3¢,(0-m® e, + [ (@,)]. (3.3)

Dots here mean derivatives with respect to s, Now,
choosing the smearing functional

F= e“", (3-4)
we get for the functional G [see (2.3)] the following
expression:
szei(ijls;al)eiﬂfaléa:[ei(j,a)eiﬁ(aléa. (3.5)

This equation can be understood by using the formula
(2.6) and keeping in mind that (3.4) is an integral of
motion of the canonical Eq. (3.2), which does not de-
pend upon time. We remind that solutions of (3, 2) fulfill
the conditions ¢[s,x;a]l, = a(x).
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Performing now the integration with respect to «,,
we see that

Geeiligig /27 j (3.6)
I1ly

where
{j,]= [ etYrevexpli [ dx[3a, @ -m?)a, +/ (@)
is a generating functional for the time ordered Green’s

functions describing QFT.

This finishes our statement expressed at the beginning
of this section.

The possibility of expressing G with the help of (3. 5)
gives some identity for the 7 functional. Indeed, putting
in (3.5) j,=0, we get

f ei(il.w1[8;al)eiﬁlaléa=T[].l].
Hence
exP{i(jl’ (pl[s; -i6/6¢)t ™ (:2’:2)/27'[&1] 1::0——_ 7—[71] (3.7

The formula (3.5) also shows that G is the stationary
functional (G=0). However, it turns out that G may be
expressed through different nonstationary functionals,

It is seen, for instance, by splitting the energy
integral on free and interacting parts,

H=H +H,,, (3.8)
and considering the functionals

L1 . . ;
GH[S.J]Em_fei(J.w[s,al)HinntetHo[a}éa. 3.9)

These functionals fulfill the nonstationary equation

(2.5), because smearing functionals
F,=H! (3.10)

are not (stationary) integrals of motion of Eq. (3.2).
Of course,

236, [sy)=cljl.

At the end of this section we would like to demonstrate
the fulfilling of Eq. (2.7) by some integrals of motion
in the case of the starting equation (3.2).

Since now (2, 8) is fulfilled, (2.7) takes the form of
equation for integrals of motion of Eq. (3.2):

ﬁ+fdx(a26f; ~(@-ma L)) )F 0. (3.12)

int e

(3.11)

It turns out that in spite of the functional character of
Eq. (3.12) some solutions can be easily found due to
the Noether theorem or, directly, from Eq. (3.2).

The energy integral (3, 3) or integral (3.4) fulfill
(3.12), which is easily seen by substitution.
The momentum integrals
0
Ef dx azaa, (3.13)

fulfill Eq. (3.12) because

ad
/dx(azaj—a

Indeed, the first and second terms disappear, for
integration by parts gives the same expression but with

-[@ _mz)a1+L'(al)]5—a; 0‘;) =0.
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different signs, The third term

) 2
? —_—
_/;ixL (al)—axj al_/—dxax

i

[(a,)=0.

4. DESCRIPTION OF QFT WITH THE HELP OF
FUNCTIONAL J

Let U(%) be a function defined on a five-dimensional
space: ¥ = (w,x) CR'XR?,
The functional J, from definition, is equal to
JIU)= [ expli [ U(a(x),x)dx]
xexplzi [ a(0-m?)adx]6a (4.1)

Here the functional pseudomeasure 6« is translational
invariant, and & means a one-component function defined
on R*,

Of course,

J[u] ‘u:L (m)+wj1(x) = T[jl]’
where 7 is defined by (3.6).

4.2)

The above equality shows that any local theory with
Lagrangian which does not contain derivatives can be ob-
obtained from the functional J.

Unfortunately, up to now, J is known only for functions
Ulw, x)=wj(x) + bw?,
which correspond to the trivial interaction (z-point
functions obtained from the J functional are known., We

do not know, however, the J functional given in a com-
pact form., )

Now we shall derive some invariant properties of J,
which are imposed by the translational invariance of
pseudomeasure.

We have
J= [elU[al e{a(D-mz)alzca

:f il Lol ei(am@-m2><a+n)/25a’ (4.3)

where we have used some obvious abbreviations of
description,

Introducing the transformation A, acting on a function
U as follows,

AhU(w,x)

=U(w+hx),x)+ 0@ - m?h(x), 4.4)
one can describe Eq. (4.3) in the compact way:
J[ A )= emir@=m®n iz (1 (4.5)

where 7 and « are any functions belonging to a certain
class.

Equation (4.5) expresses the translational invariance
of a functional pseudomeasure appearing in the definition
of the J functional.

Differentiating (4.5) with respect to » and putting £
=0, one can get for J the first order functional dif-
ferential equation

5

‘/.dw(g%U(;‘c)+w([]—m2)mJ=0, (4.6)
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where &= (w,x).

This equation is not equivalent to (4,5) since the
functional

J=exp| [ UR)ox)dz],

where ¢ fulfills the Klein—Gordon equation:
O -m?e(x)=0

solves (4, 6) but not (4.5).

4.7

For F fulfilling the Klein—Gordon equation: (4.4)
becomes

AU(w,x)=Ulw + k(x),x) 4.8)

and transformation A, has the group property
Ao A= Dy 4.9)
Now Eq. (4,5) is the following:

J M) =dlul, 4.10)

where 4 is any solution of the Klein—Gordon equation.

5. FOUR-DIMENSIONAL FORMALISM

From Sec. 3 one can see that QFT of one scalar field
defined on the four-dimensional space may be described
with the help of the mathematical apparatus used in the
case of statistical classical field considered on the
five-dimensional space,

At first sight this enlarging of dimensions may be the
result of using so-called space functional instead of
space—time functionals (Ref. 2, Vol. 2, p.614) leading
to n-point functions with the same time (parameter s).

However, the considerations below show that the rea-
sons are more intrinsical.

For that purpose let us consider a self-interacting
classical field defined on the four-dimensional space:

(O-m2ek)=-L'(o(x)), x=(¢,X) ER*, (5.1)

The space functional G (see Sec. 2) is defined as
follows:

Glezil= [ expli[ olt,x;alix)dx}Flajoa. (5.2)

The definition of the space—time functional G leading
to n-point functions with different times is

G{J1= [ explif olx;a]ld () dxtFlafsa. (5.3)
The energy integral of Eq. (5.1) is an integral over
R
H:j dx[é((pz)z_%¢1(A_m2)(p1+L(a1)]~ (5-4)
Due to a three-dimensional integration, the dimension
of H is

[H]=L", (5.5)

Here we have assumed that the dimension of the clas-
sical field (5.1) is the same as quantum field, ]

This fact makes it now impossible to postulate for the
smearing functional F the simple expression (3.4), if
we do not want to introduce some unphysical dimension-
al parameter,
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The dimensionless of F in (5.4) may be realized with
the help of more complicated integrals of motion, for
example,

F=f(H/VP,B)), (5.6)

but it is not known whether such functionals do lead to
effective unitary S -matrix theory.

It is of interest to notice that assuming for a field ¢
such dimension that H is a dimensionless quantity leads
to an incorrect dimension for S -matrix elements con-~
structed from the generating functional

Sla, Bl= (30 - m?)q [, 8]]

_ (
- G[}]lgzm,gﬁﬂmz,qo,m,,

(see Ref. 6), or forces us again to introduce an un-

(5.7
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physical dimensional parameter.

In the case of the five~-dimensional equation (3.1), the
energy integral (3,3) as well as momentum integrals are
dimensionless quantities, what permits us to construct
from them smearing functionals without introducing any
dimensional constants.
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Observations on the symmetries of the Racah coefficient are made in terms of its three allowed
series representations. The Bailey’s transform between the two terminating Saalschutzian ,F (1) series,
when applied to the F (1) representation for the Racah coefficient, is shown to result (at best) in
the allowed substitution j — —j —1 for any one of the six angular momenta in the Racah

coefficient.

The Racah coefficient! W(abcd; ef) is defined as a
single sum over an index P whose range is restricted
to

a+b+e,at+c+f,
WA s d+ficrd+e

(1)

< P <min [a+b+c+d.b+c+e+f,] .

atd+e+f

By settingn=a+b+c+d-P, n=b+c+e+f—P, and
n=a+d+e+f—P, in succession, we can obtain three
series representations.

The well-known symmetries of the Racah coefficient
are

(a) Permutations of the columns of {32,

(b) interchange of any two elements in a row of {;g‘;}»
with the corresponding elements in the other row, and

(¢) the symmetries found by Regge.?

In literature, > the 24 symmetries of the types (a) and
(b) are together called as tetrahedral symmetries.
Since each of the six Regge symmetries can be super-
imposed on a given tetrahedral symmetry, we have. in
all, 144 symmetries of the Racah coefficient.

The series representations of the Racah coefficient
can be rearranged into the generalized hypergeometric
series of unit argument, viz., ,F, (ABCD;EFG;1), de-
fined in the usual manner,?® as in Rose, * with

Az¢~a—-b, B=e¢=-c—-d, C=f-a-c, D=f-b-d,
E-—q-b~c-d-1, F=e+f-a-d+1,
G=¢+f-b-c+1, (2)

which corresponds to the series obtained by substituting
H==a+b+c+d-P=v- P, Similarly, corresponding to
the series obtained for substitutions n=b+c+e+f-P
=v-Pandn=a+d+e+f-P=v-P, we have two F,
(1)s whose numerator and denominator parameters are
given, respectively, by

A=d-b-f, B=a-b~¢, C=d-c-e,

D=a-c—-f, E==b-c—-e—-f-1,

Feua+d-¢—-f+1, G=a+d-b—-c+1 (3)
and

A=b-a-e, B=b-d-f, C=c—-a-/,

D=c—-d-¢, E=—-a-d-e-f-1,

F=b+c=-e-f+1, G=b+c-a-d+1. (4)
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We notice that. for all the physical values of a, b, c,

d, e, and f, all the numerator parameters, A, B, C,
and D, are nonpositive and the denominator parameter
E, being also negative, satisfies the condition

(A,B,C or D)>E, by virtue of the triangular conditions.
For the ,F, (1) series to be convergent,* there must be
a numerator parameter such that

(A,B,C,D)=(F,G). (5)

However, comparison of the denominator parameters
with the numerator parameters, along with the triangu-
lar conditons, yields the condition

(F,G)>(A,B,C,D) (6)

in all the three cases. From (5) and (6) it follows that
both F and G must be greater than zero for the ,F; (1)
series to be convergent. The values of F and G depend
upon the relative magnitudes of a+d, b +c¢, and e +f.

It is straightforward to find that except for a=b=c=d
=e=fand a+d=>b+c=e+f, when all the three ,F, (1)’s
are convergent, for other physically allowed values of

a, b, ¢, d, e and f, only one or two of the set of three
&5 (1)'s are convergent. Thus, the set of three ,F, (1)
series representations are necessary.

Since a ,F, (1)=1 when any one or more of the nume-
rator parameters is zero, we can immediately obtain
24 formulas for special values of the arguments of the
Racah coefficient, like the one given in Edmonds.?

Choosing any one of the three allowed ,F, (1) series
representations for {f,’;;’}, say, that with parameters
given by (2), we find that symmetries of type (a) lead to
either one of the other two ,F, (1) series (i.e., those
with parameters given by (3) or (4)] or the same &5 (D
series whose parameters are permuted as in F,
(ABDC; EGF;1). Symmetries of type (b), applied to any
one of the three ,F, (1) series, lead to the same series
but with numerator parameters alone permuted as in:

.F, (CDAB; EFG;1), ,F, (DCBA; EFG;1),
and F, (BADC;EFG;1).

All the other permutations of the numerator parameters
lead to one of the five Regge symmetries on which a
tetrahedral symmetry of type (a) and/or (b) is super-
imposed. It is straightforward to list the 24 possible
numerator parameter permutations of a given ,F, (1)
series and the corresponding symmetries of the Racah
coefficient associated with them, with the denominator
parameters kept fixed as EFG or permuted as EGF

(£ being identified as the obviously negative denomina~
tor parameter).
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It is interesting to note that, of the 4! X3! =144 possi-
ble permutations of the numerator and denominator pa-
rameters of a given ,F, (1) series, only 4!X2=48
permutations correspond to the known symmetries of
the Racah coefficient. For, only two of the six possible
denominator parameter permutations (EFG and EGF)
correspond to meaningful symmetries of the Racah co-
efficient. For example, if we consider the case in which
the denominator parameters alone are permuted to FEG,
then the Racah coefficient W(abcd; ef ) is found to be re-
lated to

W(a,3lb-c-e-f-2], H-b+c-e-f-2] d;

Yeb-cte-f-2], H{-b=-c—-e+f-2). &)

This is not a meaningful Racah coefficient, as long as
we assume angular momenta to take positive integer
and half-integer values only; since four of the six argu-
ments in the coefficient (7) are strictly negative, they
violate the defining triangular conditions on a, b, ¢, d,
e, and f.

Therefore, of the 144 known symmetries of the Racah
coefficients only 48—eight tetrahedral symmetries plus
the five Regge symmetries on each of which eight
tetrahedral symmetries are superimposed—can be ac-
counted for by considering the numerator and denomina-
tor parameter permutations of any one of the three F,
(1) series. This is due to the fact that there are three
allowed series representations for a Racah coefficient
and there are only eight tetrahedral symmetries which
leave a given series invariant. To be explicit, the eight
tetrahedral symmetries that leave the series given by
(2) invariant are {325} and {%¢} on each of which symme-
tries of type (b) are superimposed. Again, four of the
six Regge symmetries and four of the six column permu-
tations take one series representation into another.

Minton® has tried to arrive at a new symmetry for the
Racah coefficient by resorting to the Bailey transform”
between the two terminating Saalschutzian ,F, (1) series:

+Fs (ABCD; EFG; 1)
_r|E+F-A-B-D,E+F-A-B-C,F-C-D,F
E+f-A-B E+F-A-B-C-D,F-=C,F-D

X, F (E-B,E-A,C,D;E,E+F~A-B;E+—-A~B;1),
(8a)

where, we have used the notation,

pyg, ] _ D(P)T(q)- - -
r[r,s,“-:, - r(r)r(s)...'

The above relation is invariant to interchange of A

and B, C and D, and F and G. We observe that if we set
C=0, then the T factor in (8a) becomes 1 and the ,F,
(1) series on the right and left sides of (8a) is 1. Choos~
ing the set of parameters given by (8a) for the ,F, (1)
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series, we find that

e-a-b,e—~c—-d,0,a+c-b-d

oF5 ;11 =1

—a-b-c-d-1l,c+e+1-d,at+te+1-b
- F ~e~-1l-a-b,-e-1-c-d,0,atc—-b-d,

4 3 ’
—-a-b-c—-d-1,c—e—-d,a—e~b

1

(8b)

An identification of the corresponding numerator and
denominator parameters on the right and left sides of
(8b) clearly shows that the Bailey transform when ap-
plied to the ,F, (1) series given by (2) for the Racah
coefficient leads to the substitution ¢ — - ¢~ 1. This

j—=-j-1 9)
substitution is mathematically allowed, since it leaves
the eigenvalue of the square of the angular momentum
operator as well as the matrix elements of the raising
and lowering angular momentum operators unaltered.
This property has been considered?® in all the formulas
of the Clebsch—Gordan and Racah coefficients, though
physically negative angular momenta are not of
significance.

When using the Bailey transform for the ,F, (1) series
of the Racah coefficient, it should be noted that two of
the numerator parameters (C and D) and a denominator
parameter (L) are left unaltered. Since all the numera-
tor parameters of the ,F, (1) series given by (2), (3),
and (4) are negative, it follows that keeping two of them
(C and D) fixed implies: min (A, B) < min (C, D). Since
there is an arbitrariness in the naming of the numerator
parameters as A, B, C, D and the denominator param-
eters as £, F, G, there arise *C,x3C, =18 possible
ways of choosing (C and D) and E. Six of these 18 possi-
bilities can be identified to be due toa j——j -1 (or,
equivalently, —j—j+ 1) substitution for one of the six
angular momenta which occur in a Racah coefficient.
Each of the twelve other cases leads to a ,F; (1) series
whose parameters cannot be identified to be those of
any of the three allowed ,F, (1) series (2), (3). or (4),
under any substitution(s) of the type (9). Hence, it is
clear that the ,F, (1) series that arises after the Bailey
transformation in these 12 cases does not relate to a
Racah coefficient. In fact, Minton made the choice

C=f-a-c,D=f-b-d and E=e+f-a—-d+1

and was led to his “new” symmetry for the Racah co-
efficient which violates the defining triangular condi-
tions. ? Therefore, we conclude that it is not possible
to arrive at meaningful new symmetries for the Racah
coefficient by using the Bailey transform for a ,F, (1)
series.
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Erratum: Lie theory and separation of variables. 3. The
equation f;, - ;s = y2f [J. Math. Phys. 15, 1025 (1974)]

E. G. Kalnins and W. Miller, Jr.

Centre de Recherches Mathématiques, Université de Montréal, Montréal 101, P.Q., Canada

(Received 11 April 1975)

PACS numbers: 01.85., 02.20.Q

Dr. Charles Boyer has kindly pointed out an error in

the computation of the spectrum of the operator Ly =09,

+ 7%e? on L,(R), which corresponds to the Bessel func-
tion basis of solutions for the Klein—Gordon equation.
This error, which is the responsibility of the second
author, consists in the assertion that the self-adjoint
extensions Ly ,. have only discrete spectrum

A= (2rn+ a)? and an orthonormal basis of eigenfunctions

fEx)=V2(a+2n) J,,,(re*), n=0,1,2,--,

where 0 < a <2, In fact, as is shown on pp. 93—95 of
the book Eigenfunction Expansions. Part One. (Oxford
U.P., Oxford, 1962), 2nd ed., by E.C. Titchmarsh,
these operators also have continuous spectrum.

Taking the case a=2 for simplicity, we find that the
operator L, has discrete spectrum x=4(n+ 1),
n=0,1,..., and continuous spectrum X < 0 with gen-
eralized eigenfunctions

CUMULATIVE AUTHOR INDEX

FRE)V =, 5 (ver) +J_, = (ve))/2sinh(m V=X )] /2,
FB FBY=6(-2").

Here, (-, ) is the usual L,(R) inner product. The func-
tions {f3, f2} together form a complete set for L,(R).

The separable solutions of the Klein—Gordon equa-
tion corresponding to the continuum basis are

FE(s, ) =[sinh(@mV=x /2 [J o5 (vu) + T, = (vu)]

X Kim (-ivv)
where
s=@?+uP® + %)/ 2uv, t=@®-u*v?+0%)/ 2uv, v>u>0.
There are similar expressions for other regions of the
(u,v) plane,
The error, while regrettable, in no way affects the
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